
VideoPose: Estimating 6D object pose from videos

Apoorva Beedu∗

Georgia Institute of Technology
abeedu3@gatech.edu

Zhile Ren
Georgia Institute of Technology

jrenzhile@gmail.com

Varun Agrawal
Georgia Institute of Technology

varunagrawal@gatech.edu

Irfan Essa
Georgia Institute of Technology

irfan@gatech.edu

Abstract

We introduce a simple yet effective algorithm that uses
convolutional neural networks to directly estimate object
poses from videos. Our approach leverages the temporal
information from a video sequence, and is computationally
efficient and robust to support robotic and AR domains. Our
proposed network takes a pre-trained 2D object detector
as input, and aggregates visual features through a recur-
rent neural network to make predictions at each frame. Ex-
perimental evaluation on the YCB-Video dataset show that
our approach is on par with the state-of-the-art algorithms.
Further, with a speed of 30 fps, it is also more efficient than
the state-of-the-art, and therefore applicable to a variety of
applications that require real-time object pose estimation.

1. Introduction
Estimating the 3D translation and 3D rotation for ev-

ery object in an image is a core building block for many
applications in robotics [27, 31, 6] and augmented real-
ity [21]. The classical solution for such 6-DOF pose es-
timation problems utilises a feature point matching mech-
anism, followed by Perspective-n-Point (PnP) to correct
the estimated pose [26, 29, 25, 12]. However, such ap-
proaches fail when objects are texture-less or heavily oc-
cluded. Typical ways of refining the 6DOF estimation in-
volves using additional depth data [33, 3, 9, 15] or post-
processing methods like ICP or other deep learning based
methods [36, 13, 19, 28], which increase computational
costs. Other approaches treat it as a classification prob-
lem [32, 13], resulting in reduced performance as the output
space is not continuous.

In robotics, augmented reality, and mobile applications,
the input signals are usually videos rather than a single im-
age. Li et al. [18] utilize multiple frames from different
viewing angles to estimate single object poses, which does

not work robustly in complex scenes. Wen et al. [35] and
Deng et al. [5] use tracking methods to estimate the poses,
however these methods do not explicitly exploit the tempo-
ral information in the videos. The idea of using more than
one frame to estimate object poses has seen limited explo-
ration. As the object poses in a video sequence are implic-
itly related to camera transformations and do not change
abruptly between frames, and as different viewpoints of the
objects aid in the pose estimation [17, 4], we believe that
modelling a temporal relationship can only help the task.

Motivated by this, in our proposed approach, we utilize
a simple CNN-based architecture to extract useful features,
and subsequently aggregate the information across con-
secutive frames using a recurrent neural network (RNN).
The training is performed on the YCB-Video dataset [36]
and the approach achieves comparable performance to
state-of-the-art approaches, while requiring lower compu-
tational costs. We also conduct extensive ablation studies
and demonstrate the effectiveness of our network design.

The primary contributions of our paper are:

• We introduce a simple yet effective neural network
architecture for estimating 6-DOF object poses from
videos. Our system first extracts image features and
estimates depth and labels, then use a temporal module
to aggregate information across frames and estimate 6-
DOF pose of every object in the current frame.

• We perform extensive ablation studies on different de-
sign choices of the system, and show that using videos,
as opposed to using single images, can improve the
predictions significantly at an improved computational
speed of 30 fps.

2. Related Work
Estimating the 6-DOF pose of objects in the scene is

a widely studied task. The classical methods either use

1

ar
X

iv
:2

11
1.

10
67

7v
1

 [
cs

.C
V

]
 2

0
N

ov
 2

02
1

Figure 1. Overview of our VideoPose framework for 6D object pose estimation. We use the same encoder as in [36]. Z4 is the fused
features from Fig 2

template-based or feature-based approaches. In template-
based methods, a template is matched to different locations
in the image, and a similarity score is computed [9, 8].
However, these template matching methods could fail to
make predictions for textureless objects and cluttered en-
vironments. In feature based methods, local features are
extracted, and correspondence between known 3D objects
and local 2D features is established using PnP to recover
6D poses. However, these methods also require sufficient
textures on the object to compute local features and face
difficulty in generalising well to new environments as they
are often trained on small datasets.

Convolutional Neural Networks (CNNs) have proven to
be an effective tool in many computer vision tasks. How-
ever, they rely heavily on the availability of large-scale an-
notated datasets. Thus, the YCB-Video dataset [36], T-
LESS [10], and OccludedLINEMOD dataset [16, 25] were
introduced. These datasets have enabled the emergence of
novel network designs such as PoseCNN, DPOD [37] and
PVNet [36, 25]. To further increase the amount of accurate
annotated data, Trembly et al. [30] introduced synthetically
generated photo-realistic data, which when trained on, gave
improved performances on the estimation task [31]. In this
paper, we use the challenging YCB-Video dataset, as it is
a popular dataset that serves as a testbed for many recent
algorithms.

Building on those datasets, various CNN architectures

have been introduced to learn effective representations of
objects, and thus estimate accurate 6D poses. Kehl et al.
[13] extends SSD [20] by adding an additional viewpoint
classification branch to the network. Rad et al. [26] and
Telkin et al. [29] predict 2D projections from 3D bound-
ing box estimations. However, these methods fail to deal
with pose ambiguities and objects under heavy occlusion.
Most notably, PoseCNN [36] uses a Hough voting scheme
to vote for the center of the object and then use the bounding
boxes to estimate the 3D rotation. To address the problems
of heavy occlusions and ambiguities,[25, 12, 23, 22] learn
to detect keypoints and then perform PnP. However, these
methods also encounter similar problems of pose ambigui-
ties for symmetric and partially occluded objects.

Other methods involve a hybrid approach where the
model learns to perform multiple tasks. Song et al. [28]
enforce consistencies among keypoints, edges, and object
symmetries. Billings et al. [2] predict silhouettes of ob-
jects along with object poses. There is also a growing trend
of designing model agnostic features [34] that can handle
novel objects. These directions are beyond the scope of our
paper, as our goal is to find the best practice for pose esti-
mation in videos when the objects of interest are given.

To refine the predicted poses, several works use addi-
tional depth information and perform a standard ICP algo-
rithm [36, 13], or directly learn from RGB-D inputs [33,
19, 37]. We argue that since the input signals to robots

2

Figure 2. Overview of a simple temporal RNN network: Zt−1 is the feature from the previous time-step and Zt is the Z3 from Fig 1.

and/or mobile devices are typically video sequences, in-
stead of heavily relying on additional depth information,
estimating poses in videos by exploiting the temporal data
could already refine the single pose estimations. A notable
work from Deng et al. [5] introduces the PoseRBPF al-
gorithm that uses particle filters to track objects in video
sequences. This state-of-the-art algorithm provides accu-
rate estimations at a high computational cost. Wen et al.
[35] also perform tracking, but use synthetic rendering of
the object at the previous time-step. In contrast to the above
papers, we show that a simple temporal module that aggre-
gates information across different frames at a high compu-
tational speed performs comparable or better than using sin-
gle frames.

3. Approach
Given an RGB video stream, our goal is to estimate the

3D rotation and 3D translation of all the objects in every
frame of the video. We assume the system has access to
the 3D model of the object. In the following sections, R
denotes the rotation matrix with respect to the annotated
canonical object pose, and T is the translation from the ob-
ject to the camera.

3.1. Overview of the network

Our pipeline, shown in Figure 1 consists of two stages.
The first stage corresponds to the feature extractor, depth
estimator and semantic label predictor. The second has a
temporal RNN and a Regressor. For extracting image fea-
tures, we use a simple VGG-16 model similar to [36], and
fine-tune the last 2 layers to encode features from the depth
and semantic prediction tasks.

Pose Estimation relies on accurate object detection. The
object detection module is responsible for giving the class-
id and Region-Of-Interest (ROI). During training, we use
the ground truth bounding box and during testing, we
use the predictions and bounding box from the PoseCNN
model. This can ideally be replaced with any lightweight
feature extraction model such as MobileNet [11] to make

the inference faster, but we choose bounding boxes from
PoseCNN for fair comparison to prior works. We learn the
depth and semantic segmentation using a Decoder consist-
ing of 3 CNN layers. The final layer from the feature ex-
tractor and the penultimate layer of the depth estimator are
concatenated and pooled together by using ROI Align [7]
which is passed through the temporal layer. We believe that
adding depth features can aid in the estimation, when depth
information is not available.

3.2. Temporal block

To use the features from the previous step, we project
the image features from the previous step to current step
using the camera transformation matrix M as Mt ∗ feat ∗
M−1t−1, which is subsequently concatenated with the features
from the current time-step. This is passed to an Encoder
network and its output is divided into two parts – the first
128 layers representing the memory, and the remaining 256
layers representing the fused features.

The fused features are further passed through a regressor
module to estimate the poses, and the memory features are
used for the next time-step. We perform the transformation
based on the ground truth camera transformations. This is
illustrated in Figure 2.

3.3. 6D Pose Regresssion

The translation vector T is the object location in the cam-
era coordinate system. A naive way of estimating T is to
directly regress to it. However, doing so cannot handle mul-
tiple object instances or generalise well to new objects. To
tackle this problem, Xiang et al. [36] estimate T by localis-
ing the 2D object center in the image and estimating object
distance from the camera. Suppose c = (cx, cy)T are the
centers of the object in the frame and Tz is either learnt or
estimated from the depth image, then Tx and Ty can be es-

3

PoseCNN
PoseRBPF
(50 particles)

VideoPose
(GT BBox)

VideoPose
(PoseCNN BBox)

ADD ADD-S ADD ADD-S ADD ADD-S ADD ADD-S
002 master chef can 50.9 84 56.1 75.6 55.5 85.0 52.1 84.3

003 cracker box 51.7 76.9 73.4 85.2 10.9 63.3 6.9 58.6
004 sugar box 68.6 84.3 73.9 86.5 47.1 71.9 41.2 68.6

005 tomato soup can 66 80.9 71.1 82.0 62.6 83.3 61.0 83.2
006 mustard bottle 79.9 90.2 80.0 90.0 67.9 85.9 73.7 88.7
007 tuna fish can 70.4 87.9 56.1 73.8 56.1 83.3 53.1 82.10
008 pudding box 62.9 79 54.8 69.2 56.7 76.6 48.9 71.32
009 gelatin box 75.2 87.1 83.1 89.7 76 87.2 70.8 84.6

010 potted meat can 59.6 78.5 47.0 61.3 45.9 77.7 41.4 75.6
011 banana 72.3 85.9 22.8 64.2 40.6 70.7 43.4 72.1

019 pitcher base 52.5 76.8 74.0 87.5 60 82.5 48.8 77.30
021 bleach cleanser 50.5 71.9 51.6 66.7 41 59.9 29.5 50.4

024 bowl 6.5 69.7 26.4 88.2 1.5 73.2 1.6 67.1
025 mug 57.7 78 67.3 83.7 56.3 85.4 43.2 77.9

035 power drill 55.1 75.8 64.4 80.6 26.4 63.9 16.5 61.9
036 wood block 31.8 65.8 0.0 0.0 0.00 16.30 0.00 13.6

037 scissors 35.8 56.2 20.6 30.9 29.5 62.5 27.9 72.1
040 large marker 58 71.4 45.7 54.1 21.6 55.6 20.5 54.2
051 large clamp 25 49.9 27.0 73.3 14 61.5 16.5 55.3

052 extra large clamp 15.8 47 50.4 68.7 55.3 49.9 4.1 46.0
061 foam brick 40.4 87.8 75.8 88.4 43.1 80.7 40.9 77.5

ALL 53.7 75.9 57.1 74.8 39.7 71.2 35.4 68.3

Table 1. Quantitative Evaluation of 6D poses (ADD and ADD-S) on the YCB-Video Dataset. Bold values compare between PoseCNN,
PoseRBPF and VideoPose using the PoseCNN bbox. Values in green compares the columns with PoseRBPF, underlined values compare
with PoseCNN

timated as: [
cx
cy

]
=

fxTx

Tz
+ px

fy
Ty

Tz
+ py

 , (1)

where fx and fy are focal lengths and (px, py)T are prin-
cipal points. Since we have rough estimates of object lo-
cations from the noisy object detection inputs, we train our
model to estimate ∆cx,∆cy, and Tz . We then estimate Tx

and Ty using the following equation:

[
cx + ∆cx
cy + ∆cy

]
=

fxTx

Tz
+ px

fy
Ty

Tz
+ py

 . (2)

The fused features from the temporal module are then
fed to 2 disconnected regressor blocks - a 2 layer FCN Re-
gressor module, with 512 dimensions and 3 × n where n
is the number of objects for the translation and a 2 layer
FCN regressor the temporal features are fed to a regressor
with 512 dimensions and 4×. We disconnect Tx, Ty and Tz

by training two separate linear layers to account for the dif-
ferent dimensions learnt. Similar to [36], we represent the
rotation R using quaternions.

3.4. Training Strategy

We use the L1 loss to learn depth (Ldepth), and cross en-
tropy loss for semantic segmentation (Llabel). The pose es-
timation loss is obtained by projecting the 3D points using
the estimated and ground truth pose, and then computing
their distance:

Lpose(q̃,q) =
1

m

∑
x∈M
||(R(q̃)x+ t̃)−(R(q)x+t)||2, (3)

where M denotes the set of 3D points, m is total number
of points. R(q̃) and R(q) indicate the rotation matrix com-
puted from the quaternion representation as in [36]. In ad-
dition, we also add a cosine loss on the quaternions, and
regularisation loss to force the norm of the quaternion to be
1. Quaternions that represent rotations are unit norm, and
forcing the norm to be bounded by 1 helps in the learning
process by reducing the scope.

Lreg = ||1− norm(q̃)||, Linner prod = 1− 〈q̃,q〉. (4)

The total loss can be defined as

L(q̃,q, t̃, t) = Ldepth+Llabel+Lpose+Lreg+Linner prod. (5)

4

4. Experiments
Now we compare our method with PoseCNN[36] and

PoseRBPF[5]. We also conduct ablation studies on the
choice of model architecture, and the number of video
frames the model requires to perform well.

4.1. Dataset

We evaluate the proposed method on the YCB-Video
dataset [36]. Details of which are explained in sec 4.3. The
YCB-Video Dataset contains 92 RGB-D video sequences
of 21 objects. The dataset contains textured and textureless
objects of varying shape, and different levels of occlusion
where about 15% of objects are heavily occluded. Objects
are annotated with 6D poses, segmentation masks and
depth images. For our purposes, We create smaller video
sequences of 10 RGB images by taking every alternate
frame from the video.

4.2. Metrics

We use two metrics to report on the YCB-Dataset. ADD
is the average distance between the corresponding points on
the 3D object at the ground truth and predicted poses. Given
the estimated [R̃|̃t] and the ground truth poses [R|t], ADD-
S, designed for symmetric objects, calculates the mean dis-
tance from each 3D point to a closest point on the target
model.

4.3. Implementation

VideoPose is implemented using the PyTorch [24]
framework. We use a learning rate of 5e−4 and the Adam
optimiser [14] with a weight decay of 1e−5. Learning rate
is multiplied by 0.8 after every 5 epochs, until it hits a
lower bound of 1e−6. For the feature encoder, we freeze the
VGG16 weights from PoseCNN, and train rest of the net-
work from scratch. We create video samples of 10 frames
and train our model for 100 epochs with the learning sched-
ule described above.

During training, we augment the input images with
colour-jitter and noise, and for the bounding box, we aug-
ment it by extending the height and width randomly be-
tween 0 and 10% of the height and width of the object.
While training the temporal block, we create videos with
random time jumps in between. For instance, given a large
video sequence, we create video samples 1 : n : 10 ∗ n,
where n is a random number between 1 and 10, thus forc-
ing the model to account for small and large jumps between
consecutive frames.

4.4. Evaluation

We compare our results with PoseCNN [36] for single
frame prediction and PoseRBPF [5] for videos in Table 1.

We compare two different approaches for computing the
ROI: 1) Using the ground truth; 2) Using the ROI pre-
dicted by PoseCNN. In order to maintain comparable FPS,
the PoseRBPF is computed using 50 particles.

We observe that, VideoPose, when using the bounding
boxes from PoseCNN, has a small drop in the accuracy,
showing that our method is robust to noises in the ROIs. For
objects where our method is not comparable to the sota, we
further look into the AUC curves in Fig. 3 and note that our
method outperforms PoseCNN in rotation for symmetric
objects like foam brick and large marker, and in translation
for scissors and mustard bottle which are non-symmetric.

PoseCNN
VideoPose
(ConvGRU)

VideoPose
(baseline)

ADD ADD-S ADD ADD-S ADD ADD-S
002 master chef can 50.9 84 36.34 80.86 55.5 85.0

003 cracker box 51.7 76.9 22.51 62.14 10.9 63.3
004 sugar box 68.6 84.3 40.73 68.76 47.1 71.9

005 tomato soup can 66 80.9 66.99 83.49 62.6 83.3
006 mustard bottle 79.9 90.2 75.33 88.96 67.9 85.9
007 tuna fish can 70.4 87.9 60.58 86.35 56.1 83.3
008 pudding box 62.9 79 49.56 75.77 56.7 76.6
009 gelatin box 75.2 87.1 81.06 89.32 76 87.2

010 potted meat can 59.6 78.5 61.54 83.64 45.9 77.7
011 banana 72.3 85.9 22.31 69.59 40.6 70.7

019 pitcher base 52.5 76.8 70.54 85.92 60 82.5
021 bleach cleanser 50.5 71.9 46.93 62.11 41 59.9

024 bowl 6.5 69.7 12.78 80.08 1.5 73.2
025 mug 57.7 78 67.62 88.79 56.3 85.4

035 power drill 55.1 75.8 35.99 71.21 26.4 63.9
036 wood block 31.8 65.8 0.00 28.72 0.00 16.30

037 scissors 35.8 56.2 50.08 73.39 29.5 62.5
040 large marker 58 71.4 36.81 53.89 21.6 55.6
051 large clamp 25 49.9 20.72 69.33 14 61.5

052 extra large clamp 15.8 47 5.93 55.39 5.3 49.9
061 foam brick 40.4 87.8 44.78 86.14 43.1 80.7

ALL 53.7 75.9 44.09 73.90 39.7 71.2

Table 2. Comparison of performance between different architec-
tures. Bold values represent the best method for a given object.

Impact of different temporal blocks We also perform ab-
lation studies on different architectures used to capture the
temporality, as shown in Table 2. Instead of the baseline
temporal RNN in fig. 2, we use a ConvGRU [1] as the
temporal module and observe that it handles the temporal

Methods [36] [5] (50) [5] (200) Ours(RNN) Ours(ConvGRU)
Time (fps) 5.88 20 5 30 25

Table 3. Comparison of frame rates for different methods:
PoseCNN [36], PoseRBPF (50 particles) [5], PoseRBPF (200 par-
ticles) [5], VideoPose (baseline) and VideoPose(ConvGRU)

Methods Position=2 Position=5 Position=10 Position=15 Position=19
ADD 41.6 41.61 44.08 41.3457 40.79

ADD-S 71.77 71.83 73.9 71.71 71.18

Table 4. Studying the number of previous frames required for a
good estimate. Position refers to the location of the keyframe in a
video sequence of 20 frames.

5

Figure 3. AUC with rotation and translation curves for few objects

information more effectively. The performance is compara-
ble to or better than PoseCNN and PoseRBPF for more than
50% of the objects. We treat this ablation study as a proof
that using previous estimates can aid in the pose estimation,
regardless of the temporal module used.
Time efficiency We compare the time efficiency of our
model with the baseline models. The run time for PoseCNN
is taken from Wang et al. [33]. From Table 3, we see
that VideoPose with ConvGRU, is slightly faster than
PoseRBPF while providing an increase in the performance.
As the baseline temporal RNN is more lightweight than
ConvGRUs, we get about 50% increase in the speed
compared to PoseRBPF, while maintaining the accuracy.

Qualitative Analysis of the 6D predictions We show three
examples of the predictions by VideoPose, PoseCNN, and
ground truth poses in Table 5 6. The columns represent the
2D projections of predictions using VideoPose, PoseCNN,
and the ground truth poses, and rows specify the time-steps.
More results are shown in the supplementary. We notice
that the poses between frames are more consistent when
estimated through videos as opposed to single images. We
also observe that the initial frame estimation is as critical
for our approach, as it is for other refinement methods.

Effect of number of previous frames used Table 4 shows
the effect of number of previous frames used. We see that
we get the best performance at position 10, and it reduces

a little for later positions. It is worth noting that the model
was trained for a video sequence of length 10. So the little
performance drop for 15th and 19th position shows that
our model, even when trained for a video sequence of 10,
can effectively model longer sequences. This is due to the
ablation of the video samples during training as discussed
in 4.3.

5. Conclusion
In this work, we introduce VideoPose, a simple convo-

lutional neural network architecture to estimate object 6D
poses from videos. We demonstrate that by using the 6D
predictions from the previous frames, we can significantly
improve 6D predictions in the subsequent frames. We also
conduct an extensive ablation study on different design
choices of the network, and show that our model is able
to learn and utilise the features from previous predictions
regardless of the network choices. Finally, the proposed
network performs in real-time at 30fps, thereby improving
the time efficiency over previous approaches. As a future
work, we would like to further improve our architecture
with a better temporal module and model the relationship
with the camera transformation and the objects. Our
method successfully maintains consistency in pose estima-
tion between frames, however, still depends on the initial
frame estimation. We would like to investigate further
on improving this, while maintaining the computational
efficiency.

6

VideoPose PoseCNN GT

t = 1

t = 2

t = 3

t = 4

t = 5

Table 5. Visualisations of the estimated poses on YCB-Dataset for 3 different. Each row represents results at different time-steps. The
columns are VideoPose, PoseCNN and Ground truth visualisations respectively.

7

VideoPose PoseCNN GT

t = 1

t = 2

t = 3

t = 4

t = 5

Table 6. Visualisations of the estimated poses on YCB-Dataset. Each row represents results at different time-steps. The columns are
VideoPose, PoseCNN and Ground truth visualisations respectively.

8

References
[1] Nicolas Ballas, Li Yao, Chris Pal, and Aaron Courville.

Delving deeper into convolutional networks for learning
video representations. arXiv preprint arXiv:1511.06432,
2015.

[2] Gideon Billings and Matthew Johnson-Roberson. Silhonet:
An rgb method for 6d object pose estimation. IEEE Robotics
and Automation Letters, 4(4):3727–3734, 2019.

[3] Eric Brachmann, Alexander Krull, Frank Michel, Stefan
Gumhold, Jamie Shotton, and Carsten Rother. Learning
6D object pose estimation using 3d object coordinates. In
European conference on computer vision, pages 536–551.
Springer, 2014.

[4] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.
Multi-view 3D object detection network for autonomous
driving. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 1907–
1915, 2017.

[5] Xinke Deng, Arsalan Mousavian, Yu Xiang, Fei Xia, Tim-
othy Bretl, and Dieter Fox. Poserbpf: A rao-blackwellized
particle filter for 6d object pose tracking. Robotics: Science
and Systems (RSS), 2019.

[6] Clemens Eppner, Arsalan Mousavian, and Dieter Fox. A bil-
lion ways to grasp: An evaluation of grasp sampling schemes
on a dense, physics-based grasp data set. arXiv preprint
arXiv:1912.05604, 2019.

[7] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-
shick. Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969, 2017.

[8] Stefan Hinterstoisser, Cedric Cagniart, Slobodan Ilic, Peter
Sturm, Nassir Navab, Pascal Fua, and Vincent Lepetit. Gra-
dient response maps for real-time detection of textureless ob-
jects. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 34(5):876–888, 2011.

[9] Stefan Hinterstoisser, Vincent Lepetit, Slobodan Ilic, Ste-
fan Holzer, Gary Bradski, Kurt Konolige, and Nassir Navab.
Model based training, detection and pose estimation of
texture-less 3d objects in heavily cluttered scenes. In
Proceedings of the Asian Conference on Computer Vision
(ACCV), pages 548–562. Springer, 2012.

[10] Tomás Hodan, Pavel Haluza, Stepán Obdrzálek, Jiri Matas,
Manolis I. A. Lourakis, and Xenophon Zabulis. T-less: An
rgb-d dataset for 6d pose estimation of texture-less objects.
IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 880–888, 2017.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861, 2017.

[12] Yinlin Hu, Joachim Hugonot, Pascal Fua, and Mathieu Salz-
mann. Segmentation-driven 6d object pose estimation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 3385–3394, 2019.

[13] Wadim Kehl, Fabian Manhardt, Federico Tombari, Slobodan
Ilic, and Nassir Navab. Ssd-6d: Making rgb-based 3d detec-
tion and 6d pose estimation great again. Proc. of the IEEE
International Conference on Computer Vision (ICCV), pages
1530–1538, 2017.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

[15] Yoshinori Konishi, Kosuke Hattori, and Manabu Hashimoto.
Real-time 6D object pose estimation on CPU. arXiv preprint
arXiv:1811.08588, 2018.

[16] Alexander Krull, Eric Brachmann, Frank Michel, Michael
Ying Yang, Stefan Gumhold, and Carsten Rother. Learning
analysis-by-synthesis for 6d pose estimation in rgb-d images.
In Proc. of the IEEE International Conference on Computer
Vision (ICCV), pages 954–962, 2015.

[17] Yann Labbé, Justin Carpentier, Mathieu Aubry, and Josef
Sivic. Cosypose: Consistent multi-view multi-object 6d pose
estimation. In European Conference on Computer Vision,
pages 574–591. Springer, 2020.

[18] Chi Li, Jin Bai, and Gregory D Hager. A unified framework
for multi-view multi-class object pose estimation. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 254–269, 2018.

[19] Yi Li, Gu Wang, Xiangyang Ji, Yu Xiang, and Dieter Fox.
DeepIm: Deep iterative matching for 6d pose estimation. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 683–698, 2018.

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016.

[21] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler.
Pose estimation for augmented reality: a hands-on survey.
IEEE transactions on visualization and computer graphics,
22(12):2633–2651, 2015.

[22] Markus Oberweger, Mahdi Rad, and Vincent Lepetit. Mak-
ing deep heatmaps robust to partial occlusions for 3d object
pose estimation. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 119–134, 2018.

[23] Kiru Park, Timothy Patten, and Markus Vincze. Pix2pose:
Pixel-wise coordinate regression of objects for 6d pose es-
timation. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 7668–7677, 2019.

[24] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Alban
Desmaison, Luca Antiga, and Adam Lerer. Automatic dif-
ferentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[25] Sida Peng, Yuan Liu, Qixing Huang, Xiaowei Zhou, and Hu-
jun Bao. Pvnet: Pixel-wise voting network for 6dof pose
estimation. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4561–
4570, 2019.

[26] Mahdi Rad and Vincent Lepetit. Bb8: A scalable, accurate,
robust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. Proc. of the IEEE
International Conference on Computer Vision (ICCV), pages
3848–3856, 2017.

9

[27] Ashutosh Saxena, Justin Driemeyer, and Andrew Y Ng.
Robotic grasping of novel objects using vision. The Interna-
tional Journal of Robotics Research (IJRR), 27(2):157–173,
2008.

[28] Chen Song, Jiaru Song, and Qixing Huang. Hybridpose: 6d
object pose estimation under hybrid representations, 2020.

[29] Bugra Tekin, Sudipta N Sinha, and Pascal Fua. Real-time
seamless single shot 6d object pose prediction. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 292–301, 2018.

[30] Jonathan Tremblay, Thang To, and Stan Birchfield. Falling
things: A synthetic dataset for 3d object detection and pose
estimation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages
2038–2041, 2018.

[31] Jonathan Tremblay, Thang To, Balakumar Sundaralingam,
Yu Xiang, Dieter Fox, and Stanley T. Birchfield. Deep object
pose estimation for semantic robotic grasping of household
objects. In Conference on Robot Learning (CoRL), 2018.

[32] Shubham Tulsiani and Jitendra Malik. Viewpoints and key-
points. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1510–1519,
2015.

[33] Chen Wang, Danfei Xu, Yuke Zhu, Roberto Martı́n-Martı́n,
Cewu Lu, Li Fei-Fei, and Silvio Savarese. Densefusion: 6d
object pose estimation by iterative dense fusion. Proceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

[34] He Wang, Srinath Sridhar, Jingwei Huang, Julien Valentin,
Shuran Song, and Leonidas J Guibas. Normalized object co-
ordinate space for category-level 6d object pose and size esti-
mation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2642–2651, 2019.

[35] Bowen Wen, Chaitanya Mitash, Baozhang Ren, and Kostas E
Bekris. se (3)-tracknet: Data-driven 6d pose tracking by
calibrating image residuals in synthetic domains. In 2020
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 10367–10373. IEEE, 2020.

[36] Yu Xiang, Tanner Schmidt, Venkatraman Narayanan, and
Dieter Fox. Posecnn: A convolutional neural network for 6d
object pose estimation in cluttered scenes. In Proceedings
of the European Conference on Computer Vision (ECCV),
2018.

[37] Sergey Zakharov, Ivan Shugurov, and Slobodan Ilic. Dpod:
6d pose object detector and refiner. In Proceedings of the
IEEE International Conference on Computer Vision, pages
1941–1950, 2019.

10

VideoPose PoseCNN GT

t = 1

t = 2

t = 3

t = 4

t = 5

Table 7. Visualisations of the estimated poses on YCB-Dataset. Each row represents results at different time-steps. The columns are
VideoPose, PoseCNN and Ground truth visualisations respectively.

11

VideoPose PoseCNN GT

t = 1

t = 2

t = 3

t = 4

t = 5

Table 8. Visualisations of the estimated poses on YCB-Dataset. Each row represents results at different time-steps. The columns are
VideoPose, PoseCNN and Ground truth visualisations respectively.

12

VideoPose PoseCNN GT

t = 1

t = 2

t = 3

t = 4

t = 5

Table 9. Visualisations of the estimated poses on YCB-Dataset. Each row represents results at different time-steps. The columns are
VideoPose, PoseCNN and Ground truth visualisations respectively.

13

