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On the Efficacy of Text-Based Input
Modalities for Action Anticipation
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Abstract
Anticipating future actions is a highly challenging task due to the diversity and scale

of potential future actions; yet, information from different modalities help narrow down
plausible action choices. Each modality can provide diverse and often complementary
context for the model to learn from. While previous multi-modal methods leverage in-
formation from modalities such as video and audio, we primarily explore how text de-
scriptions of actions and objects can also lead to more accurate action anticipation by
providing additional contextual cues, e.g., about the environment and its contents. We
propose a Multi-modal Contrastive Anticipative Transformer (M-CAT), a video trans-
former architecture that jointly learns from multi-modal features and text descriptions
of actions and objects. We train our model in two-stages, where the model first learns
to align video clips with descriptions of future actions, and is subsequently fine-tuned
to predict future actions. Compared to existing methods, M-CAT has the advantage of
learning additional context from two types of text inputs: rich descriptions of future ac-
tions during pre-training, and, text descriptions for detected objects and actions during
modality feature fusion. Through extensive experimental evaluation, we demonstrate
that our model outperforms previous methods on the EpicKitchen datasets, and show
that using simple text descriptions of actions and objects aid in more effective action an-
ticipation. In addition, we examine the impact of object and action information obtained
via text, and perform extensive ablations. We will release code upon acceptance.

1 Introduction
Suppose you go to a cafe and order a coffee and you see your barista steaming milk, can
you predict what they might do next? Action anticipation is the task of predicting future
actions, using visual cues and data from other modalities such as audio, sensor data, etc. from
current and prior observations. Predicting future actions is important for many Artificial
Intelligence (AI) applications such as autonomous driving [18, 34], assistive robotics [22,
23, 31], augmented reality, etc. Although seemingly straightforward for humans, this task
is difficult for AI models due to the challenging nature of predicting the future and the wide
range of possible actions that the models have to learn. Models not only have to detect
the action happening at the observed time, but also fuse information from (all available)
modalities to anticipate future actions.

Anticipation using only videos (single modality) remains challenging and the availability
of additional and complementary modalities is typically advantageous [13, 49]. For instance,
an assistive robot can be prepared to help an elderly person if the robot can detect the events
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leading up to a fall, and anticipate it. In addition to video (camera data), audio (sound of
the fall, or the person’s scream), a third person’s audio command (“Help the person") etc
are beneficial. Accordingly, recent works [13, 39, 49] have shown that action anticipation
greatly benefits from multi-modal training, e.g., using visual and audio cues such as active
object detection, and hand-object contact information, ASR etc. Although the models are
typically trained using modality specific encoders, we examine if natural language descrip-
tions of actions and objects can be useful for action anticipation, when employed in addition
to other modalities. Such descriptions can be highly useful as they can incorporate addi-
tional context about the environment and the objects required for performing the actions,
e.g., kitchen vs living room, the utensils utilized, etc., leading to improved action anticipa-
tion. To this end, we leverage the in-context learning capabilities of Large Language Models
(LLMs) to generate rich and detailed descriptions of actions and objects.

In this paper, we present a ‘Multi-Modal Contrastive Anticipative Transformer (M-CAT)’,
that employs a two-stage training process: (i) contrastive pre-training: where embeddings
from videos and other modalities such as optical flow, audio, natural language descriptions
of objects and actions are fused, and contrasted against rich text descriptions of future ac-
tions; and (ii) fine-tuning: where the learned embeddings from the modalities are once again
fused, and a classifier is trained to predict future actions. For both stages, we utilize frozen
pre-trained language models (e.g., the CLIP text encoder) to obtain embeddings for text de-
scriptions of object and actions, in lieu of relying on traditional feature extraction methods.

We study which modalities are more beneficial for action anticipation, and inspect how
the accuracy of action recognition for the observed frames affects anticipation. As con-
trastive pre-training typically requires large batch sizes, we explore alternate avenues of
adding more samples during training, specifically for resource constrained setups. Finally,
we also investigate whether the utilization of self-supervision as an additional objective can
be useful for anticipating actions. Therefore, the contributions of our work are:

• We propose a novel approach for predictive video modeling by contrasting multi-
modal features against rich text descriptions for future actions, generated using LLMs.

• We investigate whether natural language descriptions of actions and objects can result
in improved action anticipation.

• We improve contrastive pre-training for small batch size capabilities and also introduce
an additional self-supervised learning objective.

2 Related Work
Action Anticipation is the task of predicting future actions after certain time units in a given
video clip. This task has been explored extensively for third-person videos [1, 12, 17, 19].
The release of large-scale egocentric datasets and challenges such as Epic-Kitchen [6, 7] and
Ego-4D [16] have fast tracked the development for first-person scenarios as well. To model
the temporal progression of past actions, [11] used a rolling-unrolling-based LSTM network
to anticipate actions, such that rolling LSTMs account for the observed video frames, while
unrolling LSTMs accounted for the anticipation. [37, 38] made use of long-range past in-
formation by building a multi-scale temporal aggregating framework. [39, 40] localize the
next active object’s position to anticipate actions. In addition to gathering strong visual
features, recent methods have used other visual cues like modeling the environment [30]
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Figure 1: Left: Our training comprises two stages: first, contrastive pre-training, where
we fuse embeddings from different modalities using a Fusion Module F , followed by an
anticipation module B. The output is contrasted against the rich descriptions of future actions
generated using a LLM. The second stage involves fine-tuning a linear layer to predict future
actions. Right: Illustration of the image-text and image-image contrastive setup.

or hand-object contact and activity modeling [8]. More recently, the use of vision trans-
formers [9] has also been explored. While, AVT [13] proposes causal modeling of video
frames, and using self-supervision to learn the future frame features, MeMViT [42] per-
form multi-scale representation of frame features by hierarchically attending the previously
cached “memories". AFFT [49] proposes a fusion method to effectively fuse features from
multiple modalities and extend AVT for action anticipation. [36], AntGPT [48] and lever-
ages the goal information to reduce the uncertainty in future predictions. AntGPT [48] trains
Large Language Models (LLM) to infer goals and model temporal dynamics. In contrast,
we use pretrained LLMs to generate additional contextual cues about the actions, and create
additional text based modalities from objects and actions.

Language-Image Pre-training Training images jointly with natural language text (e.g.,
captions) has been established as an effective pre-training method for zero-shot learning,
open vocabulary testing, and as well as classification tasks. CLIP [33], ALIGN [20], FLo-
rence [46], X-CLIP [27], UniCL [44] have shown that contrastive training on large-scale
image-text pairs results in astonishing performance for zero-shot prediction. OWL-ViT [28]
uses a CLIP-based contrastive approach to transfer image-level pre-training to open vocab-
ulary object detection. Similarly, CoCa [45] is not only trained on the contrastive loss, but
also leverages generative modeling via a captioning loss. Flamingo [2] on the other hand
interleaves visual data with text and produces free-form text as output, demonstrating effec-
tive performance on several downstream tasks. Such natural language supervision also aids
in video representation learning. For instance, [3] used a visual detector to map every object
instance in the video frame into its contextualized word representation obtained from nar-
ration. Building on these works, we propose a CLIP-like contrastive pre-training approach
that learns to align multi-modal features with rich descriptions of future actions.

Multi-modal training Typically, modalities used for action anticipation include RGB
images, optical flow, object information, IMU, and audio [10, 13, 37, 43, 47, 49]. Features
from each modality are averaged, either weighted [13] or unweighted [10], or a Multi-Layer
Perceptron (MLP) is used [21]. Recently, multi-head cross attention is being employed to at-
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tend over different modalities [25, 49]. However, training modality specific encoders can be
computationally expensive. Instead, we explore the usage of text based inputs as modalities
ie objects and actions detected in text form in lieu of visual features. To this end, we propose
an architecture which contrasts fused features from different modalities including text from
actions and objects detected in the video, with descriptions generated from action labels.

3 Methodology
Given a video segment starting at τs, the goal is to anticipate action using τo length of ob-
served segment τa units before it, i.e. from τs−(τa+τo) to τs−τa. The anticipation time τa is
usually fixed for each dataset, while the observation time τo can be varied. We extract T tem-
porally sequential inputs for M modalities, denoted as xm

i , i ∈ {1, . . . ,T} and m ∈ {1, . . . ,M}.
Please refer to the Appendix for an illustration of the action anticipation task.

Our model architecture (shown in Figure 1) comprises two stages: contrastive pre-training
and fine-tuning to perform action anticipation. During pre-training, the model consists of M
modality specific feature extractors Bm, m ∈ {1, . . . ,M}, a fusion model F , and an antici-
pative module B. In the fine-tuning stage, an additional classifier is trained to predict the
future action, while the rest of the model is kept frozen. We utilize the fusion module from
[49], and a variation of the GPT2 model used in [13] for feature anticipation to predict
ẑi+1 =D(zi), i ∈ {1, . . . ,T}. In what follows, we detail the two stages, along with the imple-
mentation details. Throughout, all modality feature are extracted from pre-trained models.

3.1 Pre-training

We employ a CLIP-like [33] setup, where the embeddings from different modalities (e.g.,
images and audio) are contrasted against text embeddings computed from text descriptions
of future action classes (detailed below). The setup utilizes the following modality features:

Video Features: Given a video segment V consisting of T frames, the backbone network
B extracts features for each frame. Following [49], we use the Swin transformer features
extracted with Omnivore [14], which was trained for action recognition.

Other Modality features: For other modalities like audio, optical flow, etc., we use the
features provided by the official repositories [11, 49].

Text Embeddings for Descriptions of Actions and Objects: The embeddings for text data
are extracted using a pre-trained CLIP text encoder, which is kept frozen during training, and
only a modality specific projection layer is trained. The setup for obtaining the text descrip-
tions for actions and objects is the following: (i) objects in the video: the objects present in
the (current) video are detected using a pre-trained FasterRCNN model [11]. They are con-
verted into a sentence using the template: A video containing the following
objects: <list of objects>, and encoded using the aforementioned CLIP text
encoder; and (ii) actions in the video: similarly, we also generate a sentence for the (current)
actions in the video using the template: A video containing the following
actions: <list of action>. As some datasets do not have dense action annota-
tions, whenever actions are not available, we use the “no action” tag. During both pre-
training and action anticipation, we use ground-truth action labels. However, we also analyze
the impact of the action recognition accuracy on action anticipation in Section 4.3.

Cross Modal Fusion: For fusing information from multiple modalities xm
i , we use the

self-attention fuser (SA-Fuser) blocks from [49]. It applies L consecutive Transformer en-
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Dataset τa Modalities Metrics

EGTEA+ 0.5s RGB, Flow Top-1, cm Top-1
Ek55 1.0s RGB(R), Obj(O), Flow(F), Audio(A), Objects (text)(U), Actions(text)(V) Top-1, Top-5
EK100 1.0s RGB(R), Obj(O), Flow(F), Audio(A), Objects (text)(U), Actions(text)(V) Recall@5

Table 1: Modalities and metrics used for different datasets.

coders at each time step with dimentionality of d and k attention heads, and contains a
learnable token xΛ. The final output is the mean of all learnable tokens.

Anticipation: The Fused embeddings are passed through a variation of the GPT-2 [32]
module to predict the future features: ẑ1, . . . ẑT = D(z1, . . . ,zT ) where ẑt is the predicted
feature corresponding to the frame zt after attending to the frames z1, . . . ,zt−1. We refer the
reader to [13] for more details.

Text Emeddings for Rich Descriptions of Future Actions: we generate diverse and context
rich text descriptions of the action classes using GPT3.5 [4] (from the OpenAI API), by con-
verting the class names into sentences using the prompt: Describe <xyz> action in
1 sentence in 10 different ways, and randomly select one response during train-
ing. For reference, we provide examples and details about this generation in the Appendix.

Pre-training: Features at zT , which have encoded the temporal information over all ob-
served frames, are then trained to align with the text embedding for the future action via
contrastive learning. As the models were trained using smaller batch sizes, for effective con-
trastive learning, we augment the training with additional positive and negative samples. As
our model is trained on features and not raw videos, instead of applying augmentations to
the videos to genereate more positive samples, we follow a slow-and-fast approach. For ev-
ery sample (fast) in the batch, we create another positive sample (slow) where we uniformly
sample (1/4)T number of frames (denoted as V+

i in Figure 1b), and randomly shuffle the
temporal order for negative samples (V−

i ). In addition, we contrast every video samples
against all other action classes that do not appear in the batch (T−

i ). In order to limit the
memory usage, we cap the number of negative text samples to 512. So, for a input batch-size
of 128, we have a total of Nv = 128∗3 samples for videos, and Nt =(128∗3)∗(128∗2+512)
samples for text (see Figure 1b), with increase of 280k samples, from ∼ 16k to ∼ 300k. In
every iteration, the model has 0.0008:1 ratio of positive to negative samples, close to using a
batch-size of 1024, as opposed to 0.008 when a batch-size of 128 is used.

Similar to SLIP [29], we also add a self-supervised learning objective. The positive and
the negative samples curated (V+

i and V−
i ), along with original samples (Vi) are trained such

that similar samples are pushed closer in the embedding space.
We use standard cross entropy to train the contrastive loss. The loss is defined as

Lcross = (Lv2t +Lt2v)∗0.5+Lv2v (1)

Following AVT [13], we also utilize a self-supervised feature loss L f eat and Lnext in
addition to the contrastive loss. Therefore, our final loss function is L = Lcross +L f eat +
Lnext , where L f eat is defined as mean squared error between ẑt and zt+1, which matches the
future features predicted with the true features in a self-supervised manner.

3.2 Fine-tuning Network
Here, we fine-tune the classifier layers for the action anticipation task. We use the features
obtained from the feature anticipation module, ẑT , in conjunction with a linear layer, and
train with the cross entropy loss Lcls. During the fine-tuning stage, the fusion (M) and the
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anticipation module (B) are kept frozen when the same modalities are used, and the fuser is
finetuned when different modalities are used during pre-training and fune-tuning.

3.3 Implementation details
We process the input videos similar to [13], and sample 16 frames at 1 fps, by setting
τo = 16s. We use the Swin Transformer based RGB features provided by [49], which were
extracted from the Omnivore [14] network, originally trained for action recognition. We use
the pre-trained CLIP text encoder, processor, and tokenizer, provided by [41] for process-
ing all text inputs. During pre-training, the encoded features are projected to 1024 dimen-
sions, before passing through the fusion and the anticipative modules. In the fine-tuning
stage, the fused features are classified using a single linear layer. For both stages, we use
the SGD+momentum optimizer, using a learning rate 1e−3 and weight decay 1e−6 for 50
epochs. Further, we employ a cosine annealing learning rate schedule with a warmup for 20
epochs, and the training is performed on a single Nvidia A40 GPU, with a batchsize of 128.

For the optical flow and object features, we use the official RULSTM [11] repository, and
for audio, we use features provided by [49] 1. Our code, weights, and the action descriptions
generated will be publicly released upon acceptance.

4 Experiments

4.1 Experimental setup
Datasets and metrics: We evaluate on three action anticipation datasets: (i) Epic-Kitchens100
(EK100) [7], reporting the class-mean Recall@5 for actions, verbs and nouns; (ii) EpicK-
itchens55 (EK55) [6], where we report the Top-1 and Top-5 for actions, verbs and nouns,
through standard train and val splits; and (iii) EGTEA Gaze+ [24], in which we report the
performance on the first split of the dataset at τa = 0.5s, and the metrics include Top-1 and
class-mean(cm) Top-1 accuracies for actions, nouns and verbs. We add further details about
these datasets in the Appendix.
Modalities: We summarize the modalities and metrics used in Table 1. We use pre-trained
TSN weights provided by the official repositories [11, 49] for object features, audio, and
flow. We use the objects detected using the FasterRCNN model trained on Epic-Kitchen 55
dataset [11], and use a threshold of 0.15 and pick the top 5 objects for every frame in the
video. For actions, we use the labels provided by the dataset during training and evaluation.
We evaluate the impact of action recognition accuracy and discuss the results in Section 4.3.
Baselines: We evaluate our approach against the state-of-the-art for action anticipation, in-
cluding, RULSTM [11], AVT [13], ActionBanks [37], AFFT [49], and MeMViT [42] 2. We
re-train the AFFT model on our local environment setup for fair comparison, and observe a
small discrepancy in performance relative to the published paper. As the goal of this paper
is to demonstrate the effectiveness of learning from text embeddings, we do not compare
against other state-of-the-art methods that have a substantially different architectures like
[35, 36, 48]. AntGPT [48] introduces a promising alternate way of predicting future actions
by fine-tuning LLMs. Yet, we do not compare against it, as we do not use LLMs to infer
our outputs or predict goals and actions, rather only use it to generate detailed descriptions.

1Please refer to [49] for details about the feature extraction for different modalities.
2Please see the Appendix for details about the baselines.
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Method Verb Noun Action
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

RULSTM 32.4 79.6 23.5 51.8 15.3 35.3
ActionBanks 35.8 80.0 23.4 52.8 15.1 35.6

AVT - - - - 14.4 31.7
AVT+ 32.5 79.9 24.4 54 16.6 37.6
AFFT 34.9 78.7 26.2 53.9 17.0 34.3

Ours (R -> R) 32.4 80.1 28 56.4 16 36.5
Ours(ROFA -> ROFA) 33 79.4 26 55.5 14.9 35.9

Ours(R -> ROFA) 32.5 80.4 27.8 57 16.5 38.1
Ours* (R -> ROFA+UV) 34.3 80.6 29.7 58.8 17.9 39.8

(a) EK55

Model Top-1 Class mean acc
Verb Noun Act. Verb Noun Act.

I3D-Res50 [5] 48.0 42.1 34.8 31.3 30.0 23.2
FHOI [26] 49.0 45.5 36.6 32.5 32.7 25.3
AVT(TSN) [13] 51.7 50.3 39.8 41.2 41.4 28.3
AFFT [49] 52.1 50.7 41.4 38.4 43.7 31.8

Ours (R -> RF) 51.4 49.7 40.8 38.9 43.3 31.3

(b) EGTEA Gaze+

Table 2: (a) EK55: Comparison of state-of-the-art methods on the validation set of EK55
using the modalities (ROFA). * indicates that additional action (V) and objects (U) informa-
tion was provided in the text form. R indicates that only RGB features were used, ROFA
refers to RGB, Obj(TSN), flow (TSN) and Audio features. (b) EGTEA Gaze+: Model
performance for Split=1 at τa = 0.5s. Bolded values indicate highest score, and -> denotes
the modalities used for pre-training and fine-tuning.

Additionally, they report performance on few-shot for the Ego4D dataset (which we did not
evaluate on) making one-to-one comparison hard.
ChatGPT generated action descriptions: We provide examples of the descriptions gen-
erated for actions using the ChatGPT API (with GPT3.5 Turbo) in the Appendix. In the
descriptions, there are generally mentions of other objects that are used when the action
takes place. For example, the text descriptions for “take chopsticks” are “Use chopsticks to
grasp food and bring it to your mouth”, “Take the chopsticks and use them to pick up the
food” etc, giving context about other objects in contact with hand etc. Similarly, descriptions
for the “mix mushroom” action often involve words such as tongs, spoons or a spatula.

4.2 Comparison Against Baselines

EGTEA+ In Table 2b, we compare our results on split 1 (as in [26]) at τa = 0.5s. In
addition to the RGB data, we use the flow data provided by [11]. Similar to AFFT, we
use the pre-trained TSN features. We also note that the results for AFFT were obtained by
using the official code on our local environment. We observe that our approach does not
improve performance on EGTEA+, in contrast to other larger datasets. The smaller scale of
EGTEA+ is not a good match for contrastive learning, which is generally sensitive to data
size and sample variety, and thereby, does not result in performance improvement.
Epic-Kitchen In Table 2a and Table 3, we compare the performance of our method to the
state-of-the-art for the EK55 and EK100 datasets. For EK55, we obtain the results for the
AFFT baseline using the authors’ code. First, we consider the performance of our approach
when trained using only the (single) RGB modality. As the fusion module is a block of
transformer layers, they act as feature encoder layers when there no modalities to fuse. We
observe that our method has a 2% absolute improvement over AFFT, a multi-modal method,
and ∼5% to AVT’s single modality performance. When the model is pre-trained and fine-
tuned with multiple modalities (ROFA->ROFA), it outperforms AFFT for the Top-5 metrics,
yet performs poorly compared pre-training solely on RGB. This leads us to evaluate pre-
training with just the RGB modality, while fine-tuning the fusion and classifier layers with
multiple modalities (R->ROFA). With this training strategy, we see an improvement of 2%
compared to the (ROFA->ROFA) training, and outperforming our single modality perfor-
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Method Overall Unseen Tail
Verb Noun Action Verb Noun Action Verb Noun Action

RULSTM 27.8 30.8 14.0 28.8 27.2 14.2 19.8 22.0 11.1
TempAgg 23.2 31.4 14.7 28 26.2 14.5 14.5 22.5 11.8

AVT 30.2 31.7 14.9 - - - - - -
AVT+ 28.2 32.0 15.9 29.5 23.9 11.9 21.2 25.8 14.1

MeMViT 32.3 37.0 17.7 28.6 27.4 15.2 25.3 31.0 15.5
AFFT(Swin+) 22.8 34.6 18.5 24.8 26.4 15.5 15.0 27.7 16.2

AFFT (re) 22.4 32.4 18.1 26.5 26.8 15.3 14.6 24.3 15.9
Ours (R -> R) 30.1 32 16 32.7 28.4 15.3 23.4 25.3 13.8

Ours (R->ROFA) 31.9 35.9 17.3 32.5 30.2 14.5 25.9 30.3 15.4
Ours∗ (R -> ROFA+UV) 31.3 47.8 23.8 34.5 42.8 24 23.8 41.9 20.3

Table 3: EK100: comparison of state-of-the-art method on the validation set of EK100 us-
ing modalities provided by [11]. MeMViT uses only RGB data, while the rest use multiple
modalities. R indicates that only RGB features were used, ROFA refers to RGB, Obj(TSN),
flow(TSN) and Audio features. * indicates that additional action (V) and object(U) modali-
ties in the text form were used. Bolded values indicate the best performing method, and ->
denotes the modalities used for pre-training and fine-tuning.
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Figure 2: Impact of action recognition accuracy on the prediction of verbs, nouns and actions
for EK100. Values in dashed lines are the corresponding results from the AFFT baseline.

mance by 0.5% for Top-1 and 1.3% for Top-5 metric for actions. We believe that during
pre-training, the model can find it challenging to fuse all the modality features and then align
them with text embeddings. Additionally, we hypothesize that an Imagebind-like training
setup might be beneficial, however, we do not evaluate this scenario as ImageBind trains
modality specific encoders, whereas we do not. Adding additional information about the
objects and actions, we see an absolute improvement of 1% for Top1, and 5% for Top5.

For EK100, we compare our two-stage network against single-stage methods, as well as
using action and object information in the text form in Table 3. Similar to EK55, we see that
our single modality method outperforms AVT, while performing comparable to MeMViT.
However, MeMViT is a method that is directly trained on the videos, while we used pre-
extracted features. Our multi-modality method (R->ROFA), while performing similarly to
AFFT for actions, shows a signification improvement in the verb and noun predictions. In
addition, with the action and object information, we see a clear improvement across all
predictions, particularly in the unseen and the tail category. This indicates that the model has
efficiently learnt from the additional context provided by the text representations.

4.3 Ablations and Analysis

Impact of modalities: In Table 4b, we explore the contributions of various modalities to
EK100’s performance. Using RGB as one of the ‘modalities’, we examine the contributions
by audio and actions to the performance. In detail modality contributions are discussed in
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Method Verb Noun Action
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Recall@5

Ours (w/ gpt) 32.8 79.8 27.8 56.5 15.6 36.8 16.1
Ours (w/o gpt) 31.9 79.6 26.6 56.1 14.8 36.7 16
Ours (w/o Aug) 31.9 79.5 26.6 56.1 14.8 36.3 14.8
Ours (w/ Lv2v) 32.4 80.1 28 56.4 16 36.5 17.5

(a) EK55 Ablations

Method Overall Unseen Tail
Verb Noun Action Verb Noun Action Verb Noun Action

Ours (ROFA->ROFA) 28 33.9 15.8 29.4 28 16.6 20.5 27 13.3
Ours (R -> R) 30.1 32 16 32.7 28.4 15.3 23.4 25.3 13.8

Ours (R -> RV) 28.1 44.3 21.8 36.7 41.5 23.3 20.0 37.9 18.6
Ours (R -> RAV) 30.6 44.6 22.4 41.0 40.5 21.9 23.1 38.4 19.2

Ours (R -> ROFA+UV) 31.3 47.8 23.8 34.5 42.8 24 23.8 41.9 20.3

(b) EK100 Ablations

Table 4: Left: EK55 Ablations: comparing different training losses and protocols on the
validation set of EK55 using only RGB. w/ and w/o gpt indicate pre-training with/without
using descriptions of future actions. w/o Aug indicates that slow-fast and negative samples
were not appended to the batch samples during the pre-training, while all other methods were
not trained using Lv2v loss, w/ Lv2v is trained with the loss in addition to other losses and data
augmentations. Right: EK100: Impact of different modalities on model performance.

the Appendix. We see that from the model’s performance that action and the audio provide
complementary information that RGB alone could not leading to a better performance.
Impact of different training settings: We evaluate the effect produced by the losses and
data augmentations used during pre-training in Table 6, where: (i) w/ gpt indicates that
ChatGPT generated action descriptions were used during pre-training (as detailed in Sec-
tion 4.1); (ii) w/o gpt involves pre-training with the the simple template - This is a
video clip with action <xyz>; (iii) w/o Aug indicates that during training, the
batch samples were not appended with positive and negative samples from the slow-fast
and randomly shuffled features(detailed in Section 3.1); and (iv) w/ Lv2v contains the self-
supervised loss in addition to other losses during pre-training. We observe that using the
richer descriptions from ChatGPT and the self-supervised loss Lv2v boosts the action predic-
tion performance by 1.2% for Top-1, 0.2% for Top-5, and 3% for recall@5, indicating their
necessity during training.
Effect of the Accuracy of Actions: In Figure 2, we evaluate the impact of having access to
accurate actions on action anticipation. For this evaluation, we vary the accuracy %-age of
ground-truth action labels used. Therefore, when the accuracy of actions is 20%, it indicates
that 80% of actions during training are incorrect (i.e., they are randomly sampled). We no-
tice that as the action recognition accuracy increases, the noun prediction performance also
increases drastically. When the action recognition accuracy increases to 70%, we see that
our method starts outperforming the AFFT baseline. However, for unseen classes, an action
recognition accuracy of 55% results in performance increase. This observation also supports
that accurate action recognition is needed for accurate action anticipation. Overall, we ob-
serve that with accurate action and object recognition systems, inputs in the text format can
greatly improve prediction performance, without having to train modality specific encoders.

5 Conclusion and Future Work
In this work, we presented Multi-Modal Contrastive Anticipative Transformer(M-CAT), a
video transformer-based approach for predictive action anticipation. We developed a two-
stage process: first, contrastive pre-training between fused features from multiple modalities
and rich descriptions of future actions, encoded through a text encoder; and second, fine-
tuning, where the classifier (and fusion layers) are updated while predicting the future action.
We evaluated and observed that object and action descriptions, added through simple text
templates, can substantially improve anticipation performance. In addition, the use of richer
descriptions of future actions for contrastive pre-training was beneficial. We also analyzed
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the effect of different modalities on performance, and the impact of the accurate actions on
anticipation. In the future, we will utilize a pre-training stage similar to ImageBind [15],
which learns across multiple modalities and datasets.

References
[1] Yazan Abu Farha, Alexander Richard, and Juergen Gall. When will you do what?-anticipating

temporal occurrences of activities. In CVPR, 2018.

[2] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in Neural Information Processing Systems, 35:23716–
23736, 2022.

[3] Gedas Bertasius and Lorenzo Torresani. Cobe: Contextualized object embeddings from narrated
instructional video. In NeurIPS, 2020.

[4] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In NeurIPS, 2020.

[5] Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the
kinetics dataset. In CVPR, 2017.

[6] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evan-
gelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, et al. Scaling
egocentric vision: The epic-kitchens dataset. In ECCV, pages 720–736, 2018.

[7] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Antonino Furnari, Evangelos Kaza-
kos, Jian Ma, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray.
Rescaling egocentric vision. arXiv preprint arXiv:2006.13256, 2020.

[8] Eadom Dessalene, Michael Maynord, Chinmaya Devaraj, Cornelia Fermuller, and Yiannis Aloi-
monos. Forecasting action through contact representations from first-person video. TPAMI, 2021.

[9] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In ICLR, 2021.

[10] Antonino Furnari and Giovanni Maria Farinella. What would you expect? anticipating egocentric
actions with rolling-unrolling lstms and modality attention. In ICCV, 2019.

[11] Antonino Furnari and Giovanni Maria Farinella. Rolling-unrolling lstms for action anticipation
from first-person video. TPAMI, 2020.

[12] Jiyang Gao, Zhenheng Yang, and Ram Nevatia. Red: Reinforced encoder-decoder networks for
action anticipation. In BMVC, 2017.

[13] Rohit Girdhar and Kristen Grauman. Anticipative video transformer @ epic-kitchens action
anticipation challenge 2021. In CVPR Workshop, 2021.

[14] Rohit Girdhar, Mannat Singh, Nikhila Ravi, Laurens van der Maaten, Armand Joulin, and Ishan
Misra. Omnivore: A single model for many visual modalities. In CVPR, 2022.

Citation
Citation
{Girdhar, El-Nouby, Liu, Singh, Alwala, Joulin, and Misra} 2023



460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

AUTHOR(S): BMVC AUTHOR GUIDELINES 11

[15] Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Ar-
mand Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15180–15190,
2023.

[16] Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d: Around the world
in 3,000 hours of egocentric video. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 18995–19012, 2022.

[17] De-An Huang and Kris M Kitani. Action-reaction: Forecasting the dynamics of human interac-
tion. In ECCV, 2014.

[18] Ashesh Jain, Hema S Koppula, Bharad Raghavan, Shane Soh, and Ashutosh Saxena. Car that
knows before you do: Anticipating maneuvers via learning temporal driving models. In Proceed-
ings of the IEEE International Conference on Computer Vision, pages 3182–3190, 2015.

[19] Ashesh Jain, Avi Singh, Hema S Koppula, Shane Soh, and Ashutosh Saxena. Recurrent neural
networks for driver activity anticipation via sensory-fusion architecture. In ICRA, 2016.

[20] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International conference on machine learning, pages 4904–4916.
PMLR, 2021.

[21] Evangelos Kazakos, Arsha Nagrani, Andrew Zisserman, and Dima Damen. Epic-fusion: Audio-
visual temporal binding for egocentric action recognition. In ICCV, 2019.

[22] Hema S Koppula and Ashutosh Saxena. Anticipating human activities using object affordances
for reactive robotic response. TPAMI, 2015.

[23] Bruno Korbar, Du Tran, and Lorenzo Torresani. Co-operative learning of audio and video models
from self-supervised synchronization. In NeurIPS, 2018.

[24] Yin Li, Miao Liu, and James M Rehg. In the eye of beholder: Joint learning of gaze and actions
in first person video. In Proceedings of the European conference on computer vision (ECCV),
pages 619–635, 2018.

[25] Huidong Liu, Shaoyuan Xu, Jinmiao Fu, Yang Liu, Ning Xie, Chien-Chih Wang, Bryan Wang,
and Yi Sun. Cma-clip: Cross-modality attention clip for image-text classification. arXiv preprint
arXiv:2112.03562, 2021.

[26] Miao Liu, Siyu Tang, Yin Li, and James Rehg. Forecasting human object interaction: Joint
prediction of motor attention and actions in first person video. In ECCV, 2020.

[27] Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. X-clip: End-to-
end multi-grained contrastive learning for video-text retrieval. In Proceedings of the 30th ACM
International Conference on Multimedia, pages 638–647, 2022.

[28] M Minderer, A Gritsenko, A Stone, M Neumann, D Weissenborn, A Dosovitskiy, A Mahendran,
A Arnab, M Dehghani, Z Shen, et al. Simple open-vocabulary object detection with vision
transformers. arxiv 2022. arXiv preprint arXiv:2205.06230.

[29] Norman Mu, Alexander Kirillov, David Wagner, and Saining Xie. Slip: Self-supervision meets
language-image pre-training. In European conference on computer vision, pages 529–544.
Springer, 2022.



506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551

12 AUTHOR(S): BMVC AUTHOR GUIDELINES

[30] Tushar Nagarajan, Yanghao Li, Christoph Feichtenhofer, and Kristen Grauman. Ego-topo: Envi-
ronment affor-dances from egocentric video. In CVPR, 2020.
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Figure 3: Anticipating actions τa seconds after observing information for τo seconds using
multiple modalities.

A Action Anticipation
Given a video segment starting at τs, the objective is to predict action using a segment ob-
served τo length τa units before it, i.e. from τs − (τa + τo) to τs − τa as seen in Figure 3
(referenced in Section 3). While the anticipation time τa is usually fixed for each dataset, the
observation time τo can be varied. For every ith frame in the video with T frames, data from
corresponding M modalities are extracted.

B Action descriptions
For action description generation, we used the ChatGPT API (GPT3.5 Turbo) to gener-
ate the descriptions. We provide examples of the descriptions generated by the ChatGPT
API in Figure 4 (referenced in Sections 3.1 and 4.1). The system is asked to be an ex-
pert at video based analysis and help create a caption generation system. Then the prompt
- “Given action: {}, describe the action in 10 different ways.
is used to generate the descriptions. We see that the descriptions generated are varied, and
often include other objects that are interacted with for the action to take place. For example,
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Action
mix

mushroom

  1. Combine the mushrooms together by stirring them with a spoon or fork. 
  2. Mix the mushrooms by tossing them together with a spatula or tongs.
  3. Blend the mushrooms by stirring them gently with a wooden spoon or whisk.
  4. Merge the mushrooms by using a spoon or fork to toss them together.
  5. Integrate the mushrooms by mixing them with a wooden spoon or spatula.
  6. Combine the mushrooms by folding them together with a rubber spatula or spoon.
  7. Homogenize the mushrooms by gently mixing them with a wooden spoon or tongs.
  8. Interact the mushrooms by tossing them together with a whisk or fork.
  9. Unify the mushrooms by using a spoon or spatula to mix them together.
10. Knead the mushrooms together by mixing them with a spoon or fork.

Action
take 

chopstick

  1. Use chopsticks to grasp food and bring it to your mouth.
  2. Take the chopsticks and use them to pick up the food.
  3. Hold the chopsticks and use them to retrieve the food.
  4. Use your chopsticks to pick up the food from your plate.
  5. Grasp the food with your chopsticks and bring it to your mouth.
  6. Pick up the food with your chopsticks and enjoy it.
  7. Take the chopsticks and use them to gather the food.
  8. Use your chopsticks to collect the food and savor it.
  9. Grasp the food with your chopsticks and take a bite.
10. With your chopsticks, take the food and enjoy its flavor.

Figure 4: Descriptions generated using the ChatGPT API for actions in the EPIC-Kitchen
dataset. The generated descriptions add more contextual cues for the model to learn from.
For instance, for the action take chopsticks, the description is already alluding to the future
action of “picking up food" or “eating". During training, we randomly select one description
for every action.

the “Mix” action often involves the use of hands, tongs or other kitchen equipment, which
are highlighted in the the descriptions. This helps our model “attend” to them in the input
modalities.

C Datasets

Datasets and metrics: We evaluate our approach on three popular action anticipation
datasets: (i) Epic-Kitchens 100 (EK100) [7], which is a large egocentric video dataset with
700 long unscripted videos of cooking activities totaling 100 hours. The dataset consists of
90K segments, and has 3807 action classes, 97 verbs and 300 nouns. We report the class-
mean Recall@5 for actions, verbs and nouns; (ii) EpicKitchens 55 (EK55) [6] is an earlier
version of Epic-Kitchens 100. For comparison to existing approaches, we report the val-
idation accuracy on this dataset as well. EK55 has about 39K segments, and 2513 action
classes, 124 verbs and 351 noun classes. For EK55, we report Top-1 and Top-5 for actions,
verbs and nouns. We use the standard train and val splits to report performance. (iii) EGTEA
Gaze+ [24], an egocentric dataset containing about 10K segments, and 19 verbs, 51 nouns
and 106 unique actions. Following [13], we report the performance on the first split of the
dataset at τa = 0.5s. We report the Top-1 and class-mean(cm) Top-1 accuracies for actions,
nouns and verb.

D Baselines

In addition to comparing our method to its variants containing different modalities, we
also evaluate against the state-of-the-art for action anticipation, including: RULSTM [11],
AVT [13], ActionBanks [37], AFFT [49], and MeMViT [42]. RULSTM [11] leverages a
‘rolling’ LSTM to encoder the past and an ‘unrolling’ LSTM to predict the future. Action-
Banks [37] improves over RULSTM by carefully leveraging long-term action blocks and
non-local blocks. AVT [13] uses an attention-based video modelling architecture that at-
tends to previous frames to anticipate the future. MeMViT [42], on the other hand, processes
videos online by using cache “memory", through which the model learns to refer prior con-
text for long-term anticipation. AFFT [49] improves on AVT by using multiple modalities,
and using self-attention modules to fuse the features together.
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Figure 5: Recall@5 for verb, noun and actions on the EK100 dataset for different modality
combinations. The first bar is the baseline (i.e., AFFT) using (ROFA) modalities. Objects
and actions are used as input by converting them to text through – “A video containing the
objects/actions <xyz>", and embeddings from the text encoder are used in the fusion mod-
ule. ROFAUV stands for - R(RGB), O(Obj features), F(Flow), A(Audio), U(FasterRCNN
detected objects in text form), V(Actions in text form) modalities

E Contribution of Each Modality on Action Anticipation

In Figure 5, we explore the contributions of various modalities to performance. For all the
experiments, we use the objects provided by [11], and ground truth labels for actions.

We first compare our model performance ROFAUV against ROFA (also noted in Table 3
of the main paper). We see that the additional modalities i.e Objects and Actions significantly
improve the performance.

With RGB (R) as a base modality, comparing RV with RUV, we see that the objects
detected using fasterRCNN model aid in the performance, however, through a small mar-
gin. To understand the impact of using object information as an additional modality, we
examine the detected objects and the actions in Table 5. We see that for rows 1 and 3, the
object required for the action prediction is not detected by the FasterRCNN model with high
probability. For rows 2 and 4, while the object was detected, presence of other objects make
the action prediction challenging. On the other hand, actions (which are often defined as a
verb-noun pair) give more information about the objects being interacted and the actions in
the observed frames. Therefore, while detecting objects accurately is essential and makes
one part of the action (<verb,noun>), it is also vital that an active hand-object interaction be
detected.

Comparing RUV, FUV and AFUV we see that audio and flow also aids in the model
performance, and in combination provide the similar information to the model as the RGB
data.

F Using GPT-4 to refine predictions

For EK55, we also explore using ChatGPT (GPT-4) to reason about the future action, given
a sample set of examples from the train set, and a list of actions to choose from. We provide
the Top-10 actions predicted by our model, and ask ChatGPT to pick the most likely action,
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FasterRCNN objects Actions Future
Action

1 ‘sponge, tap’, ‘sponge, tap’,‘sponge, tap’,‘sponge, tap’,
‘sponge, tap’,‘sponge, tap’,‘sponge, tap’, ‘sponge,

tap’,‘sponge, tap’,‘sponge, tap’

‘wash plate’, ‘wash plate’, ‘no action’, ‘wash
plate’, ‘wash plate’, ‘wash plate’, ‘wash plate’,
‘wash plate’,‘insert plate’, ‘insert plate’, ‘wash
sponge’,‘wash sponge’,‘wash sponge’, ‘wash

sponge’,‘wash sponge’, ‘wash sponge’

Wash
cloth

2 ‘bin, spoon’, ‘bin’, ‘knife, ’, ‘knife, ’, ‘bin’, ‘bin’, ‘bag’, ‘bag’,
‘bag’, ‘bin, bag’, ‘bin, bag’,‘bin, bag’, ‘bin, bag’, ‘bin, bag’,

‘bin, bag’, ‘bin, bag’

‘wrap bag’, ‘wrap bag’, ‘wrap bag’, ‘wrap
bag’,‘wrap bag’, ‘wrap bag’, ‘wrap bag’, ‘wrap
bag’,‘wrap bag’, ‘wrap bag’, ‘wrap bag’, ‘wrap

bag’,‘wrap bag’, ‘wrap bag’, ‘wrap bag’

Tie Bag

3 ‘cupboard’, ‘cupboard’, ‘cupboard’, ‘cupboard’, ‘cupboard’,
‘pan,cupboard’,‘pan,cupboard’, ‘cupboard’, ‘cupboard’,

‘cupboard, lid’, ‘pan,cupboard’,
‘pan,cupboard’,‘pan,cupboard’, ‘pan,cupboard’,

‘pan,cupboard’, ‘pan, ’

‘take plate’, ‘take plate’, ‘take plate’, ‘take
plate’, ‘take plate’, ‘no action’, ‘open

cupboard’, ‘no action’, ‘insert plate’, ‘insert
plate’, ‘no action’, ‘no action’, ‘take cup’,‘no

action’, ‘open cupboard’, ‘insert cup’

Put-
into
Cup

4 ‘bowl,spoon, tap, knife’, ‘bowl,spoon, tap, knife’, ‘bowl,spoon,
tap, knife’,‘bowl, spoon, cup, tap, knife’, ‘bowl, spoon, tap,
knife’, ‘bowl, spoon, tap, knife’,‘bowl, spoon, cup, knife,

bottle’, ‘bowl, cup, tap, knife, lid’, ‘bowl,knife, tap’,‘bowl,
spoon, tap, knife, lid’, ‘bowl, spoon, tap, knife’, ‘bowl,knife,

tap’,‘bowl, spoon, tap, knife’, ‘bowl, spoon, tap, knife,
sponge’, ‘knife,tap, spoon’

‘wash cup’, ‘wash cup’, ‘no action’, ‘wash
spoon’, ‘wash spoon’, ‘put spoon’, ‘wash cup’,

‘wash cup’, ‘wash cup’,‘wash cup’, ‘wash
cup’, ‘wash cup’, ‘wash cup’, ‘no action’, ‘no

action’, ’ turn-off tap’

Turn-
off tap

5 ‘board:chopping, onion, knife, spatula’, ‘board:chopping,
onion, knife, spatula’, ‘knife, onion, spatula’, ‘knife,
board:chopping, onion, spatula’, ‘food, onion, knife,

spatula’,‘knife, board:chopping, onion, spatula’, ‘knife,
board:chopping, onion, spatula’,‘knife,

board:chopping,spatula’, ‘knife, board:chopping, lid, spatula’,
‘board:chopping,knife’, ‘knife, board:chopping,spatula’,

‘put board:chopping’, ‘no action’, ‘no action’,
‘put knife’, ‘no action’, ‘open drawer’, ‘no
action’, ‘no action’,‘take spatula’, ‘close

drawer’, ‘no action’, ‘mix aubergine’, ‘mix
aubergine’, ‘mix aubergine’, ‘mix aubergine’,

‘put aubergine’

Take
salt

6 ‘lid, glass, bottle’, ’lid’, ’lid, glass’, ’glass, lid’, ‘glass, lid’,
‘glass, container’, ‘glass, bottle, container’, ‘bag, glass’, ‘bag,

glass’, ‘glass, bag, bottle’, ‘glass, bottle, oil’,’ glass, bag,
bottle, container’, ‘glass, bag, lid, bottle’, spoon, bottle, glass,

bag, lid’, ‘onion, lid’, ‘cup, glass, bottle, bag, lid’

‘move bin’, ’ move bin’, ‘take milk’, ‘take
milk’,’ crush milk’, ‘crush milk’, ‘crush milk’,

‘crush milk’,‘no action’, ‘no action’, ‘no
action’, ’ insert milk’,‘no action’, ‘no action’,

‘take paper’, ‘take paper’

Move
glass

Table 5: Per frame objects and actions detected in a video clip in EPICKitchens-100 dataset.
The objects are detected using FasterRCNN trained on EK55 dataset. We set a threshold of
0.15, and select only top 5 objects per frame. Actions described here are the ground truth
annotations. When actions are not detected, a ‘no action" label is used instead.

given the actions in the observed timeframe (see Figure 6 for reference). The previous ob-
served actions are the ground truth, and the options are the top-10 results generated by the
model using the ROFA modalities. We provide examples in Table 7.

From Table 6, we observe that while the Top-5 and recall performance improve for Verb,
Noun and Actions, the Top-1 performance drops for all predictions. As we see in Table 7,
while GPT-4 can refine the predictions in some cases, it also produces incorrect answers
especially in cases where several “no action” are present (as the predictions are solely based
on the text input of the past actions). When the correct action is not present in the Top-5, but
is in Top-10, GPT-4 is capable of refining the prediction. It should be noted when the correct
action is not present in the Top-10 predictions at all, GPT-4 is not capable of predicting the
right action, as we force it to pick one of the 10 actions.
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 You are a helpful AI assistant to predict the next most probable next action based on the observed actions and
 common sense. The given previous observed actions are in the form of a sequence of action pairs, each action
 pair is defined by a {verb} and a {noun}, separated by a space.

 E1: 'mix vegetable', ... 'put spatula', 'no action', 'take tofu', 'no action' => "take knife"
 E2: 'take pan', ... 'filter pan', 'filter rice', 'filter rice', 'filter rice' => "pour rice"
 E3: 'wash pan', ... 'put pan', 'wash cloth', 'wash sink', 'wash sink' => "wash cloth"
 E4: 'put mushroom', 'move liquid:washing',... , 'wash mushroom', 'wash mushroom' => "take mushroom"
 Q: 'take_salt', 'no action', ... 'put-down_salt', 'no action' =>

 Options: ['open_door', 'take_fork', 'take_plate', 'take_salt', 'take_spoon', 'put-down_fork', 'open_drawer',
 'rinse_hand', 'take_spatula', 'take_napkin']

 Please predict the future action only from the options presented.
 The output should be in the json format, with the predicted action as the key.

Figure 6: Prompt provided to ChatGPT to pick most plausible future action.

Method Verb Noun Action
Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Recall@5

Ours (baseline) 32.8 79.8 27.8 56.5 15.6 36.8 16.1
Ours (GPT corrected) 28.4 79.9 25.2 57.1 13 37.6 16.5

Table 6: EK55: Accuracy after using GPT-4 to correct the predictions.

Observed Actions Future Action
(corrected)

Future Actions (predicted) GT

no action, no action, open_door, no action, take_container,
take_container, no action, take_lid, take_lid, no action, no

action, no action, no action, take_lid, take_lid, take_lid

put lid close_door, take_pan, put lid,
put-down_pan, open_door,

put-down_box:cereal, take_box:fruit,
take_colander, put-down_colander,

take_bag:cereal

put lid

close_fridge, close_fridge, no action, open_bag:cereal,
open_bag:cereal, open_bag:cereal, open_bag:cereal,
open_bag:cereal, open_bag:cereal, open_bag:cereal,
open_bag:cereal, open_bag:cereal, open_bag:cereal,
open_bag:cereal, open_bag:cereal, open_bag:cereal

take_bowl fold_bag:rice, put-down_bag,
close_bag:rice, open_bag:cereal,

take_bag:cereal, place_salad,
put_packet:crisp, get_salad, take_bowl,

put-in_bag

open_bag:cereal

stir_spatula, stir_spatula, put-down_spatula, open_container,
open_container, take_onion, take_onion, take_onion,

take_onion, close_container, close_container, close_container,
no action, no action, take_spatula, take_knife

cut_onion put-down_spatula, take_spatula,
open_container, put-down_onion,
put-down_knife, put_container,

cut_onion, take_container,
close_container, take_onion

cut_onion

take_salt, no action, no action, no action, put-down_salt,
put-down_salt, put-down_salt, put-down_salt, put-down_salt,
put-down_salt, no action, no action, no action, no action, no

action, no action

take_spoon open_door, take_fork, take_plate,
take_salt, take_spoon, put-down_fork,
open_drawer, rinse_hand, take_spatula,

take_napkin

open_door

Table 7: Examples showing the past observed actions, GPT4 corrected action, predicted
actions by our model, and ground-truth. Actions in the “Future Actions (predicted)” are in
descending order of probability.


