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Abstract

Video-based dialog task is a challenging multimodal learning task that has received
increasing attention over the past few years with state-of-the-art obtaining new
performance records. This progress is largely powered by the adaptation of the
more powerful transformer-based language encoders. Despite this progress, exist-
ing approaches do not effectively utilize visual features to help solve tasks. Recent
studies show that state-of-the-art models are biased towards textual information
rather than visual cues. In order to better leverage the available visual informa-
tion, this study proposes a new framework that combines 3D-CNN network and
transformer-based networks into a single visual encoder to extract more robust
semantic representations from videos. The visual encoder is jointly trained end-to-
end with other input modalities such as text and audio. Experiments on the AVSD
task show significant improvement over baselines in both generative and retrieval
tasks.

1 Introduction

The goal of the video-based dialog task is to answer questions about a dynamic scene presented in
the video. More precisely, given a short video clip and multiple rounds of questions and answers
about the video, the model should provide an accurate response to a follow-up question. An example
of this is shown in 1, where a model is presented with a short video and a conversation about it.
When the model is asked a follow-up question: “Did she re-enter the room?”, to provide an accurate
answer, the model has to acknowledge that the person “she” refers to the “woman” mentioned in the
previous utterances. The model also has to identify the action “re-entering the room” from the actions
in the video. This video-based dialog task represents a challenging multi-modal learning problem
that serves as a test bed for video and language representation learning. Advances in this research
field influences a wide range of applications, including providing road assistance for autonomous
vehicles [14], helping visually impaired individuals to understand their surroundings, and navigating
through a very long video etc.

Success in this multi-modal learning task hinges on tackling four main challenges: (i) extracting
strong visual representations; (ii) extracting strong textual representations; (iii) effectively combining
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User
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DH1: Is there just one woman in the video?

DH2: Does she pick up the box??

DH3: Is it water she is drinking?

DH4: What type of room is she in?

Q1: Does she re-enter or is she just gone?

Yes, there is just one women

No, she never picks it up

No, I think it's some sort of soda it's a dark color

It looks like a living room area.

A: She is just gone, never comes back

Figure 1: In video dialog task, the model is presented with a short video, a dialog about the video, and
a follow-up question. The goal is to correctly answer the question conditioned on the audio-visual
cues and the dialog history (DH).

both features with other modalities (audio, when available); and finally, (iv) generating an accurate
response in natural language. While the task has received considerable interest from the community,
current work largely focuses on obtaining strong textual and visual representations independently
and combining the features [3, 23, 34, 18, 17], while the knowledge and cues from the video-text
association have not been extensively explored. This was investigated by Liu et al. [26], who
demonstrated that most models are biased towards the textual information, while visual features
not contributing substantially towards performance. This study argues that using the visual features
extracted from frozen 3D-CNN networks learned from action recognition data, without the added
knowledge about the corresponding text association, i.e. the questions, result in reduced performance
compared to joint training with both modalities.

Our work addresses this limited utilization of visual information in the video-based dialog task by
making the models more visually aware. First, a 3D-CNN network extracts local temporal features
from the input video, which is then passed to a transformer based visual encoder network that
generates contextual representation through self-attention mechanism. These visual features are
then effectively combined with text and audio features to generate a best response for the input
video and question. These multiple modules form one unified framework that is trained end-to-end
which enables the model to generate stronger latent representations. Experiments on the video-
based dialog task AVSD show that our model learns a stronger joint visual-textual features which
contribute significantly to its performance. Through several baselines, we show how recent methods
pre-extract visual features and improve the vision-based language tasks due to the strong performance
of the language models (e.g.,BERT and GPT2). On the contrary, our framework is designed to use
standard architectures to emphasize that joint learning of visual and textual information is vital for
the video-dialog task.

The contributions of our work are as follows:

• We propose a new framework for video-based language understanding and generation tasks.
This multi-modal framework effectively learns contextual representation using strong visual
features from video, and through self-attention.

• Our framework is flexible and can use any number of modalities and different encoders for
these inputs. We show ablations on using Audio in addition to Text and Video modalities
in 4.

• We also show the effectiveness of joint training on the retrieval task with a simpler framework.
We provide extensive experiments and detailed analysis of both generative and retrieval
tasks in the AVSD dataset are provided.
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2 Related Work
Video and language understanding has been extensively investigated due to the wide range of
potential applications in human-computer interactions. Tasks such as video captioning [44, 49, 5],
video question-answering [19, 48, 31, 20], and video dialog [1, 13, 24] study the complex interplay
between the vision and natural language modalities. In the case of video question-answering, effective
performance depends on extracting strong visual representation for the input video and efficiently
fusing it with the associated text. For video dialog, Alamri et al. [1] introduced the Audio-Visual
Scene Aware Task (AVSD) as a multi-modal learning problem, the objective of which is to answer a
question based on a short video, with an associated audio and a dialog history. The task supports
a discriminative setting, where the model ranks a list of candidate answers [1, 29], or a generative
setting, where a decoder is trained to auto-regressively generate an answer [23, 11].

Self-attention models, known as transformers [42], have been very successful at generating deep
contextual linguistic representations. They are generally pre-trained with self-supervised learning on
very large unlabelled text corpora, and subsequently fine-tuned on downstream tasks. They deliver
state-of-the-art results for several natural language understanding and generation tasks [42, 33, 32, 8].
In our work we utilize a pre-trained BERT[8] model to encode the input question and the dialog
history.

Inspired by this success, a large body of work has adapted self-attention models to multi-modal
learning, including image question answering [27, 7, 22, 21, 41], image dialog [7], video question
answering [39, 38, 39], and video dialog [23, 3, 17]. In general, these approaches can be categorized
into single-stream and two-stream networks.

In the two-stream approach, each modality is independently encoded by a transformer-based network,
and information is fused through concatenation or cross-attention [41, 27]. In the one-stream
approach, Li et al. [22], Su et al. [37], and Li et al. [29] utilize a unified transformer network where
video and text tokens are combined as one sequence.

In the two-stream approach, the visual features and the text features extracted using modal specific
encoders then fused jointly via transformer-based encoder Luo et al. [28]. This study builds on the
proposed model in [28] and extends it in two ways: first, a 3D-CNN network is added to the backbone
visual encoder. Second, an audio transformer-based encoder is added to learn a representation from
the audio signal, which is combined with the other modalities via a cross-encoder, and the different
encoders and the decoder are jointly trained in an end-to-end fashion. The experiments demonstrate
the benefits of this approach.

Le. H. et al. proposed a multimodal transformer network with query-attention [17]. Zekang et
al. et al. [33] utilized a pretrained GPT2 model and extended it to learn joint audiovisual and text
featuring by training the model on multitask learning objectives [23]. Cherian A. et al. extend the
audio-visual transformer by adding student-teacher learning [35]. While all these approaches for
video dialog tasks have achieved promising improvements, the utilization of visual features remains
limited. All the approaches rely on pre-extracted visual features from 3D-CNN networks with no
further fine-tuning or training. This has resulted in models that do not fully capture the multimodal
nature of the task [26]. In contrast, this model designed in this study also updates the visual extractor
(a 3D-CNN) in an end-to-end fashion, which leads to the improved learning of visual features tailored
to the video question answering task.

3 Method

This section introduces the framework for the video-based dialog task. It presents the different modal-
specific encoders, pre-processing of the input modalities, training objectives, and the evaluation
process.

3.1 Task Formulation

Given an input video V=(V1, . . . , Vi, . . . , Vn), where Vi is the ith frame sampled from the video,
a dialog history DHt=(C, (Q1,Ans1), · · ·, (Qt−1,Anst−1)), where C is the video caption and
(Qt−1,Anst−1) corresponds to a question-answer pair at round t− 1, and audio A (see Figure 1), the
task is formulated such that, given a follow-up question Qt, the model must generate a response Rt

considering input features: V , DH1:(t−1), A, and Qt:
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Caption :  
A man is standing in a kitchen 
wiping off the stove. 
Q

0
: Is the man cooking at the 

beginning? 
A

0
: A man wipes an already 

clean looking stove.
…
Q

t
: What does he do next? 
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Figure 2: The proposed model consists of Visual encoder that receives sequences of frames and
generates an embedding Ev, Text Encoder receives text tokens and generates an embedding Ed,
Audio Encoder generates an embedding Ea, Multi-Modal Encoder fuses these embeddings and
jointly train the encoders end-to-end.

P (Rt|V,A,DH1:(t−1), Qt; θ) =

t−1∏
j=0

P (Rj |V,A,DH1:j−1, Qt; θ) (1)

and train to minimize the cross entropy loss:
L(θ) = − logP (Rt|V,A,DH1:(t−1), Qt; θ) (2)

where θ comprises of the trainable network parameters.

3.2 Model Architecture

A general overview of the proposed model is presented in Figure 2. It consists of several multi-stream
modal specific encoders to extract the initial features, followed by a self-attention network that applies
self-attention encoders to generate the contextual representations followed by a transformer-based
encoder that generates the final multimodal embedding via cross-attention mechanism. This is then
passed to an auto-regressive decoder to generate an open-ended response.

3.2.1 Text Encoder

All the text inputs: DH , C, Q and Ans are concatenated to form a single long string. Following
Devlin et al. [9] all the words are tokenized using the Word Piece tokenizer [45] to obtain a token
sequence t = {ti|i ∈ [1, n]}; where ti is the i-th token, and n is the length of the language token
sequence. [CLS] token is added at the beginning of the input sequence, and [SEP] is used to separate
each sentence (the sentence is either a question or an answer). The processed tokens are then fed to a
BERT-based uncased model [9] to generate a text embedding Ed ∈ Rn×d, where d is the hidden size
of the final self-attention layer of BERT.

Ed = BERT(t) (3)
3.2.2 Visual Encoder

Initially, a sequence of frames Vn = {vj |j ∈ [1,m]} was subsampled at 16 fps and cropped to 224 x
224. Vn is fed into a 3D-CNN network to extract the temporal features. We used I3D network [4]
pretrained on ImageNet for the encoder. We extracted global average pooled features from different
inception blocks such as Mixed4 and Mixed5 with dimensions m x d. Finally, a visual transformer-
based encoder applies self-attention over these features fv and generates visual embeddings Ev . The
visual encoder consists of N = 6 layers of Multi-Head Attention (MHA ) and Feed-Forward Network
(FFN ).
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fv = I3D(Vn), (4)
Ev = FFN(fv) + MHA(fv). (5)

3.2.3 Audio Encoder

To process the audio input, m-dimensional features were first extracted using a VGGish [10] network.
Similar to the visual features, these were then fed into a transformer-based encoder to extract a
contextual representation. Unlike the visual features, the audio CNN network was not fine-tuned.

fa = VGGish(Am), (6)

Ea = FFN(fa) + MHA(fa). (7)
3.2.4 Cross-Attention Encoder

Finally, to generate the multimodal representations, we adapted a cross-attention encoder proposed
in [28] and extended it to learn the interdependencies between the three different modalities. Given
the visual Ev, audio Ea and dialogue embeddings Ed, the encoder fuses them into one sequence
and applies cross-attention mechanism over them [28]. The cross-encoder consists of N = 6 MHA
layers followed by a Feed Forward Network. Finally, a transformer-based auto-regressive decoder is
trained to generate responses given the multi-modal representation hembd.

Hfuse = ([Ev;Ea;Ed]), (8)
hembd = FFN(Hfuse) + MHA(Hfuse). (9)

3.2.5 Training and inference

The model is trained by optimizing for two objectives losses introduced in [28], namely the Condi-
tioned Masked Language Modeling CMLM and the Decoder Reconstructive Loss.

For CMLM , %15 of the input text tokens were masked with MASK special token and the model
was trained to predict the masked tokens conditioned on hembd.

For the Decoder Reconstructive Loss, at each iteration, the decoder receives the encoded embed-
dings and generates one answer token ŷi+1 that is conditioned on the multi-modal fused output and
previous generated word ŷi. At inference time, ŷi+1 with the highest score was chose.

ŷi+1 = argmaxP (yi+1 = y|ŷi, hembd), (10)

4 Experiments

4.1 Dataset and evaluation metrics

We evaluated our framework on the Audio-Visual Scene-Aware Dialog (AVSD) dataset [1]. It
comprises of dialogs grounded in human-based action videos and videos from the Charades [36]
dataset. Each dialog consists of a video caption and 10 rounds of questions and answers about the
events in the video. In total, there are 7,659, 1,787, and 1,710 dialogs in the train, val and test sets
respectively.

The results on the DSTC-test set are reported using the common natural language generation evalua-
tion metrics including:BLEU [30], METEOR [2], ROGUE-L [25], and CIDEr [43]. The test set
has only one correct answer for each question.

4.2 Preprocessing:

Dialog History: For the dialog input, we use up to 3 turns of dialog history with a maximum length
of 100 words, which was generally sufficient for 3 rounds of dialog history plus the question.
Video-Audio features: We extracted 1024-d feature from Mixed5c and Mixed4c layers. For com-
parison with the AVSD baselines [1], we pre-extracted the visual features using I3D [4] trained on
the ImageNet dataset and used the 1024-d output from the Mixed5c layer for the baseline. For the
Audio modality, we use pretrained 1024-d features from VGGish [10]. This encoder is not fine-tuned
on the AVSD dataset.
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4.3 Training

We use the Adam optimizer [15] with a learning rate of 5e−5 and batch size of 64. Training was done
using 8 RTX-6000 GPUs. Early stopping and checkpoint that achieved the best performance on the
validation set was selected.

5 Results and Analysis

In this section, we first perform a detailed analysis on the generative task. For a more well-rounded
understanding of the contribution of visual features, several ablations on the retrieval task were
performed, – where the answer is retrieved from a pool of candidate options. Finally, we demonstrate
the performance of the proposed method via qualitative evaluation.

Table 1: Model performance on the AVSD test for the generative task. * includes Audio, † includes
summary.

Method BLEU2↑ BLEU3↑ BLEU4↑ METEOR↑ ROGUE-L↑ CIDEr↑
DGR* (2021) – – 0.357 0.267 0.553 1.004
JST*†(20219) – – 0.406 0.262 0.554 1.079
VideoGPT2*† (2020) 0.570 0.476 0.402 0.254 0.544 1.052
MTN † (2019) 0.242 0.174 0.135 0.165 0.365 1.366
JMAN (2020)[6] 0.521 0.413 0.334 0.239 0.533 0.941
Le H. et. al.(2021)[16] 0.577 0.476 0.398 0.262 0.549 1.040
TimeSformer *† (2022) [47] 0.572 0.477 0.403 0.255 0.547 1.049
Ours + Audio modality* 0.587 0.483 0.401 0.271 0.565 1.155
Ours 0.592 0.493 0.415 0.269 0.569 1.159

5.1 Results on the Generative task

We compare our results with [17, 23, 35]. VideoGPT [23] uses GPT2[33], a pretrained generative
encoder that is known to outperform BERT[8] model that we adapted. JST and MTN are also
self-attention based models, however they do not finetune the visual backend network to AVSD
dataset and feed pre-extracted visual features. Table 1 Shows that our model outperforms these
models across the different evaluation metrics, achieving a gain in BLUE2 (0.592 –>0.570), BLUE3
(0.493–>0.476), BLUE4 (0.415–>0.406), METEOR (0.269 –>0.267) and ROUGEL (0.569 –>0.356).
For CIDEr, although our method underperforms to the MTN method, the latter uses a much larger
model and more textual input (Summary, in addition to caption, and dialog history). These results
indicate that the joint training improves the model‘s utilization of the visual features, and with only a
slight increase in memory and time cost, performs better or comparable results to models with deeper
networks. By using standard architectures, we highlight the gains due to the textual-visual association
rather than stronger language encoder that is not visually-aware. We would like to reiterate that
the novelty of the proposed work lies in the approach taken in learning the joint features, and the
performance improvement achieved speaks to that.

Role of Audio Modality:

In Table 1, we show methods that use Audio with ∗. When compared to our method that uses
Audio and Text inputs, using Audio does not show a significant improvement. This is because, for
AVSD dataset specifically, the audio has sounds without any dialog. However, for completeness, and
generalisation to other datasets, we have included the results in the table.

5.2 Results on the Retrieval task

To establish that visual information aids effective performance in the AVSD task, we further evaluate
our proposed approach on the retrieval setting. In the retrieval setting, the model is given the same
inputs as the generative task but tasked with retrieving the correct answer from a pool of candidate
answers by outputting a ranking. This settings allows for direct evaluation of the encoded modalities
without the decoder performance.
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Figure 3: Retrieval task: The classification model consists of Visual encoder that receives sequences
of frames and generates an embedding Ev,Text Encoder receives text tokens and generates an
embedding Ed,Dialog Encoder fuses these embeddings and jointly train the encoders end-to-end.

For this purpose, we design a much simpler framework as shown in 3, where the video embeddings
from I3D and text embeddings from the BERT model are concatenated and optimized for the
following objectives: Masked Language Model loss (Lmlm), Next Sentence Prediction loss (Lnsp),
and text-video alignment loss (Lvta). The retrieval model is also trained jointly, thus learning from
the visual-text association. The training objectives are detailed in the Appendix 6.

Table 2: Model performance on the AVSD dataset. XXXft refers to finetuned models, XXXno-ft to
non-finetuned models. ↑ implies higher the score the better, ↓ implies, lower the score the better.

Input Text Encoder Vid Encoder ↑MRR ↑ R@1 ↑ R@5 ↑ R@10 ↓MR

DH LSTM - 50.40 32.76 73.27 88.60 4.72
BERT - 69.71 56.93 86.18 92.93 5.07

DH + V LSTM I3Dno-ft 53.41 36.22 75.86 89.79 4.41
LSTM S3Dno-ft 53.57 36.49 75.64 89.82 4.45
LSTM I3Dft 54.28 37.12 76.62 90.23 4.33

DH + V (Ours) BERTft S3Dno-ft 71.32 59.51 86.92 95.22 4.89
BERTft S3Dft 77.28 67.28 90.39 94.87 4.18

Evaluation Metrics We report the retrieval metrics: R@1, R@5, R@5, as well as the Mean Rank
(MR), and Mean Reciprocal Rank (MRR). Ideally the ground truth answer is ranked first.

Performance of the language encoders: Table 5.2 summarizes the results of the evaluation phase.
For the text encoders, we note that BERT significantly outperforms the LSTM encoder, achieving
69.71 MRR, which is a 19% absolute improvement over the LSTM-based encoder. This development
was anticipated as Transformer-based encoders, such as BERT, benefit from pre-training with a large
text corpora on several proxy tasks. This can generate a rich contextualized representation that assists
the model to understand linguistic input. However, we would like to note that even when a simple
language encoder such as LSTM is used, jointly training the visual encoder results in a significant
performance improvement.

Effect of different visual encoders: We measure the effect of utilizing different 3D-CNN networks
to extract the visual representations, and observe that they perform comparably, achieving 53.41
MRR for the I3D features, and 53.57 for S3D (5.2). This indicates that alterations to the visual
encoder do not improve the model performance, as the actual joint training for the network was the
chief factor for the performance.
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Joint training is effective: Combining the visual features with the fine-tuned language BERT
encoder - BERTft +S3Dno-ft, outperforms the language only model with an increase of 1.6% on MRR.
This modest improvement when adding visual features has been the main trend in video-based dialog
systems [1, 11, 39, 12]. Finally, the model that is jointly fine-tuned on both modalities achieved the
best performance across all metrics, with a 6% increase in MRR.

5.3 Effect of the number of fine-tuned blocks.

In Table 5.3 we detail the impact of fine-tuning several inception blocks on our visual encoders. The
S3D network comprises three convolution layers, followed by five inception blocks. The depth and
network architecture resulted in additional trainable parameters. The aim was to learn the effect of
conducting fine-tuning across more layers, i.e. inception blocks, to ascertain whether this would allow
the model to generate better visual features for the task. Table 5.3 shows the model’s performance
when fine-tuning different inception models.

Table 3: Performance by finetuning different inception blocks from the visual encoder

Retrieval Mode Generative Mode

Trained Inception Blocks ↑MRR ↑ R@1 ↑R@5 ↑R@10 ↓MR ↑BLEU2 ↑BLEU3 ↑BLEU4 ↑METEOR ↑ROGUE-L ↑CIDEr

S3Dno-ft 53.41 36.22 75.86 89.79 4.41 0.58 0.488 0.407 0.268 0.561 1.115
S3DMixed5 77.21 67.20 90.22 95.06 4.15 0.592 0.492 0.413 0.267 0.563 1.134
S3DMixed4,Mixed5 76.88 66.72 90.39 94.77 4.48 0.592 0.493 0.415 0.269 0.569 1.159

5.4 More frames are more informative:

We also conducted an experiment in which we varied the size of the sampled frames. The question
we are seeking to answer was: how many video frames are sufficient to answer the input question?
We trained the model using sampling frame sizes: 6, 16, 32 and 40. As presented in Table 4, we
can see that the model performance improved significantly when trained on larger sampling rates,
concluding that the model benefits greatly from additional visual features when trained jointly on
downstream tasks. We see a small drop in performance at frame rate of 40 frames. We believe this is
because the pre-trained model was trained with 30 frames per video sequence, and an increasing the
number of frames results in redundant data.

5.5 Dialog history is helpful:

We evaluated the effect of the length of the dialog information. We tested the model performance in
the first round -Round1, where there were no prior dialog utters, and in Round3, where there were 2
previous dialog utters, increasing in Round5 and Round10. The results for each round are displayed
individually in the AVSD test set in 5. As we can observe, the model performance improved from the
first round, with 59.57 MRR, to the third round, which obtains 81.66 MRR. This was because the
third round included information from previous rounds. As the dialog tends to become more generic
and uninformative after the initial Q and As as seen Figure 4, we see a performance drop after the
third round.

Table 4: Evaluation results for on the test set of AVSD
Performance by total number of sampled video frames

Number of
Sampled Frames ↑MRR ↑ R@1 ↑ R@5 ↑ R@10 ↓MR

6 46.38 31.15 64.70 78.87 8.46
16 74.90 64.11 89.19 94.47 4.63
32 77.28 67.92 90.22 95.06 4.15
40 77.21 66.20 89.62 94.82 4.46

Table 5: Evaluation of length of the dialog
history on the Performance.

Dialog
Round MRR R@1 R@5 R@10 Mean

rank

1 59.57 46.39 75.70 87.71 4.49
3 81.66 71.65 94.82 98.81 1.82
5 77.21 67.20 89.62 94.82 4.46
10 62.52 52.96 74.46 78.77 18.34
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Id Question GT_Answer

0 what is the person looking at in the beginning? she is looking at the glass of water in her hands
1 Is she in the laundry room? Yes, it looks to be in the basement of her home
2 Is she doing laundry at all No, she sneezes and takes some medicine
3 Where does she get the medicine from? A bottle on the washing machine
4 Does she put the bottle back on washing machine? Yes, she does, then she drinks the water
5 Does she set the glass down? She sets the glass down after sneezing to get the

medicine
6 Does she ever move around? No she stays in the same place
7 Does the video end with her drinking water Yes she is drinking the water at the end.
8 Does she say anything at all No she does not speak.
9 Are there any noises in video Only her sneeze can be heard chips

Figure 4: Questions and answers in a typical dialog setting. We see that the first few questions are
closely related to the video, but the later ones are very generic which makes it hard for the BERT
model to train on.

6 Conclusion

In this paper, we proposed a new framework for a video-based dialog task. In our framework we
optimized the learning from the visual input by jointly training the visual encoder end-to-end with
different modalities like text and audio. Different generative and retrieval tasks showed that our
training scheme generates a more rich multimodal representation and helps reduce the bias towards
the textual information. We emphasize that joint learning of visual and textual information is vital
for the video dailog task. Though there is an additional time cost and memory cost, our results show
a significant improvement across all tasks and metrics, thus re-enforcing our belief that the finetuning
the video encoders is crucial for the tasks. Future work will aim to extend our goal to pretrain our
model using self-supervision tasks in raw unlabeled data then use the generated representations for
more complex tasks such as video captioning, and video retrieval.
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Appendix

A Retrieval task: Implementation details

A.1 Text Encoder

To generate the text representation we utilize the BERT-based uncased model [9]. We feed the
processed tokens to the text encoder to generate a text embedding Td ∈ Rn×d, where d is the hidden
size of the final self-attention layer of BERT.

We concatenate DH, C,C and Q to form a single long string. Next, we follow Devlin J et al. [9]
and tokenize all the words using the Word Piece tokenizer [45] to obtain a token sequence t =
{ti|i ∈ [1, n]}; where ti is the i-th token, and n is the length of the language token sequence.
< CLS > token is added at the beginning of the input sequence, and < SEP > is used to separate
each sentence (the sentence is either a question, or an answer). In addition to the embedding of
these words, we add positional embedding, and segment embedding. For the segment embedding we
followed [29] and added additional segment embeddings for the questions and answers, see Figure 5.

The hidden size of the model is 768 and the batch size is 16. For the dialog input, we used up to 3
turns of dialog history with a maximum length of 200 words.

Question

‘CLS’,  'a',  'boy',...,'out', ’SEP’,  'what’,…, 'the', ‘MASK’,  boy’, … ,’SEP’, 'he', 'was', ‘MASK’,…, ’SEP’, ‘can' , 'you', 'tell', ...,,‘PAD’, ‘SEP’

[101, 1037,  2879, ... ,102,  101, 2054, ... , 3332, 102,  2559, 102, 2648,  ... ,102,  2064, 2017, ..., 2012, 102, ... ,1996,  2879,  ..., 0,  0,  0, 102]

 0  0  0 0  0 0  0  0  1 1  1  1  1  1  1   1   0  0  0  0  0  1  1  1  1  1  1  1   1   0  0  0  0  0  1  1  1  1  1  1  1   1   0  0  0  0  0 0  0  1  1  1  1  1  1  1   

+

+

0  1  2  3  4  5  6  7  8  9  10  11  12  13 14  15  16  … … … … …. … … … …. … … … ….  … … … … …. … … …… … …. … … …  224 255

Tokenizer

Dialog HistoryCaption

Token Embedding

Segment Embedding

Positional Embedding

What is the adorable boy looking at? 
He was looking outside the window

Can you tell what is he looking at?A boy is in the kitchen, sitting on a chair.
 He gets up to look out the window

Figure 5: The final input for the text encoder is the sum of the token embedding, segment embedding
and the position encoding

A.2 Visual Encoder

For the visual encoder, we use S3D [46], which is a 3DCNN built on the Inception network [40] as a
backbone with separable temporal convolutions.

First, we subsample a sequence of frames v = {vj |j ∈ [1,m]} at the rate of m fps and 224 x 244
frame size. Next, we feed the frames sequence to the pretrained S3D and extract global average pooled
features from different inception blocks such as Mixed_4 and Mixed_5. The extracted features, Ve
have the dimension m x 1024. We present ablations over different frame rates in Section 5.4.

A.3 Training Objectives

We train our model jointly end-to-end by optimizing for the following objectives: Masked Language
Model loss (Lmlm), Next Sentence Prediction loss (Lnsp), and text-video alignment loss (Lvta). MLM
and NSP tasks are widely used to perform transfer learning and fine tuning of pre-trained Transformer-
based models in new downstream tasks [9, 42]. In our work we adopted those tasks as follows:

• For the Masked Language Modelling task, we masked 10% of the final input tokens and
replaced those tokens with a <MASK> token; and trained the model to predict the masked
tokens from the surrounding ones.
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• In the Next Sentence Prediction task, given two sentences A and B a label O, we trained the
model to give an output of 1 if A and B are related and should appear together, and output
0 otherwise. A is the concatenated input tokens: C + DHt + Qt, and B represents the
ground-truth answer for a positive example. For a negative example, we randomly select the
sample from the list of candidate answers.

• Text-video alignment task: After the visual embedding Ve is extracted using the afore-
mentioned visual encoder, we apply a fully-connected layer to transfer Ve to the same
dimensional space at Te. Then we concatenate these representations to get the fused token
embedding fusede. Then we apply inner product between fusede and a candidate answer
embedding ae, and train the model with negative log-likelihood and k-negative samples with
the weighted total losses: Lmlm, Lnsp and Lvta.

A.4 Qualitative results:

We show qualitative results from our retrieval model in Figure. 6 and Figure. 7. We see that our
model is able to retrieve better answers compared to the video encoder is not finetuned to the task.
As presented in these example, our best model ranks the correct answer as the top predicted answer
more frequently than a the baseline model, with the same language encoder. Indicating that the model
benefits largely from the joint end-to-end training of the visual and language encoders.

Question GT_Answer Top_Predicted_Answer Top_Predicted_Answer
BERTft + S3Dno-ft BERTft + S3Dft

Is there only one man in the
video?

Yes, he is the only person in the video Yes, just the one man. There is one person in the
video.

In the beginning, is he look-
ing at a book?

Yes, he is flipping though it before toss-
ing it into the box

Yes it is, might be checking for some-
thing.

Yes, he is flipping though it
before tossing it into the box

Do you think it is an instruc-
tion manual?

It may have been, it didn’t look very
thick

Yes probably. like a tall hair It may have been, it didn’t
look very thick

Does he toss it in the blender
box?

Yes, in the blender box Yes, both the kitchen and the living
room can be seen in the video.

Yes, in the blender box

What happens next in the
video?

He starts wiping the island top off with
a cloth

Yes, probably. like a tall hair Yes, probably. like a tall
hair

Is he using a cleaner or just
a cloth?

He is only using the cloth The is only using the cloth The is only using the cloth

What happens after that? Nothing. The video ends with him still
wiping the island top off

Nothing. The video ends with him still
wiping the island top off

Nothing. The video ends
with him still wiping the is-
land top off

So does he ever leave the
room?

No, he stays in the kitchen Yes, at the very end Yes, at the very end

No one else enters the
room?

No, there is no one else in the room There is only one person There is only one person

Does he ever look directly
at the camera?

No, only at the book and the island top No, only at the book and the island top No, only at the book and the
island top

Figure 6: Example 1: We show the answers generated by our model (Jointly trained BERT + Video
Encoder) and compare it with the separately trained BERT + Video Encoder. The answers in green
are the correct answers while red are incorrect answers generated by the models
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Question GT_Answer Top_Predicted_Answer Top_Predicted_Answer
BERTft + S3Dno-ft BERTft + S3Dft

0 Where does the video take
place?

Looks like a bedroom
maybe It seems to start in a pantry. Looks like a bedroom maybe

1 How many people are in the
video?

There is just one person
One older gentleman is the person in
the video

One older gentleman is the person in
the video

2 What gender does the per-
son in the video appear to
be?

The person in the video is
male The person in the video is male The person in the video is male

3 How old does he appear to
be?

Not sure, maybe in his twen-
ties He looks young, id guess teens maybe Not sure, maybe in his twenties

4 What happens after he en-
ters the room?

He grabs a towel and some
clothes and then goes off
screen

He grabs a towel and some clothes and
then goes off screen

He grabs a towel and some clothes and
then goes off screen

5 Does he place the towel and
clothes anywhere?

Not that i can see because he
goes off screen with them Not that i can see because he goes off

screen with them
Not that i can see because he goes off
screen with them

6 Does he ever come back on
screen?

Yes he comes back without
the stuff and then starts tak-
ing his jacket off

No he stays in that room for the rest of
the clip

Yes he comes back without the stuff
and then starts taking his jacket off

7 Where does he place his
jacket?

He carefully places it on the
bottom bunk of the bed He is putting them on counters it looks

like
He carefully places it on the bottom
bunk of the bed

8 How does the video end? He goes to his belt like he is
going to take it off but he is
kind of off screen and then
it ends

He goes to his belt like he is going to
take it off but he is kind of off screen
and then it ends

He goes to his belt like he is going to
take it off but he is kind of off screen
and then it ends

9 Did you hear any sounds in
the video?

No I don’t hear anything in
the video No I heard no speaking No I don’t hear anything in the video

Figure 7: We show the answers generated by our model (Jointly trained BERT + Video Encoder) and
compare it with the separately trained BERT + Video Encoder. The answers in green are the correct
answers while red are incorrect answers generated by the models.
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