

Text Descriptions of Actions and Objects Improve Action Anticipation

Apoorva Beedu, Harish Haresamudram, Irfan Essa Georgia Institute of Technology

Motivation

- Task: predicting future actions based on video input and other modalities.
- No limit on observation period.
- Anticipation starts after a gap of τ_a seconds.
- Observed actions are not available during inference.

EGTEA

Table 1: EGTEA Gaze+: Model performance for Split=1 at $\tau_a =$ $0.5s. \rightarrow$ denotes the modalities used for pre-training and fine-tuning.

Model	Top-1			С	Class mean a		
	Verb	Noun	Act.	Verb	Noun	Act.	
AVT(TSN) [10]	51.7	50.3	39.8	41.2	41.4	28.3	
AFFT* [34]	52.1	50.7	41.4	38.4	43.7	31.8	
M-CAT ($R \rightarrow RF$)	51.5	50.1	41.3	40.7	45.9	33.5	

Comparable performance to baseline. Effective contrastive learning requires large datasets and training in large batches.

EpicKitchens-100

 Table 4: EK100: comparison of M-CAT against state-of-the-art
methods on the val set of EK100 using modalities provided by [8].

Method	Overall			Unseen				Tail		
	Verb	Noun	Action	Verb	Noun	Action	Verb	Noun	Action	
RULSTM	27.8	30.8	14.0	28.8	27.2	14.2	19.8	22.0	11.1	
TempAgg	23.2	31.4	14.7	28	26.2	14.5	14.5	22.5	11.8	
AVT	30.2	31.7	14.9	-	-	-	-	-	-	
AVT+	28.2	32.0	15.9	29.5	23.9	11.9	21.2	25.8	14.1	
MeMViT	32.3	37.0	17.7	28.6	27.4	15.2	25.3	31.0	15.5	
AFFT(Swin+)	22.8	34.6	18.5	24.8	26.4	15.5	15.0	27.7	16.2	
I-CAT ($\mathbf{R} \rightarrow \mathbf{R}$)	30.1	32	16	32.7	28.4	15.3	23.4	25.3	13.8	
CAT ($R \rightarrow ROFA$)	31.9	35.9	17.3	32.5	30.2	14.5	25.9	30.3	15.4	
$\Gamma^* (R \rightarrow ROFA+UV)$	31.3	47.8	23.8	34.5	42.8	24	23.8	41.9	20.3	
InAViT	29.7	37.6	26.4	22	20	-		- 2	-	
AT (InAViT + UV)	30.2	38.4	26.5	2	2	-	<u>1</u>	525		

M-CA M-CA M-CA M-CA

moda

Action and object information is highly useful. Incorporating action/object via text descriptions is a viable solution, especially when training an LLM is infeasible. Accurate action recognition is important for action prediction.

EpicKitchens-55

 Table 2: EK55: comparing performance of M-CAT against state of-the-art methods on the val set of EK55.

Method	Verb		Noun		Action	
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
RULSTM	32.4	79.6	23.5	51.8	15.3	35.3
ActionBanks	35.8	80.0	23.4	52.8	15.1	35.6
AVT	-	-	-	-	14.4	31.7
AVT+	32.5	79.9	24.4	54	16.6	37.6
AFFT	34.9	78.7	26.2	53.9	17.0	34.3
M-CAT $(R \rightarrow R)$	32.4	80.1	28	56.4	16	36.5
$\text{I-CAT} (\text{ROFA} \rightarrow \text{ROFA})$	33	79.4	26	55.5	14.9	35.9
M-CAT ($R \rightarrow ROFA$)	32.5	80.4	27.8	57	16.5	38.1
-CAT* (R \rightarrow ROFA+UV)	34.3	80.6	29.7	58.8	17.9	39.8

• Pretraining outperforms single modality training Action and object info. outperforms by ~5%.

Ablation Studies

(a) EK55 Ablations

Method	Action					
victilou	Top-1	Top-5	Recall@5			
AT (w/ gpt)	15.6	36.8	16.1			
AT (w/o gpt)	14.8	36.7	16			
T (w/o Aug)	14.8	36.3	14.8			
$AT (w/L_{v2v})$	16	36.5	17.5			

Removal of augmentations and GPT descriptions during pre-training reduce performance!

(b) EK100 Ablations

Additional	Method	Action			
Additional	wicthou	Overall	Unseen	Tail	
nodalities help	M-CAT (ROFA→ROFA)	15.8	16.6	13.3	
improve	M-CAT ($R \rightarrow R$)	16	15.3	13.8	
performance!	M-CAT ($R \rightarrow RV$)	21.8	23.3	18.6	
periornarioor	M-CAT ($\mathbf{R} \rightarrow \mathbf{RAV}$)	22.4	21.9	19.2	
	M-CAT (R \rightarrow ROFA+UV)	23.8	24	20.3	

Conclusion